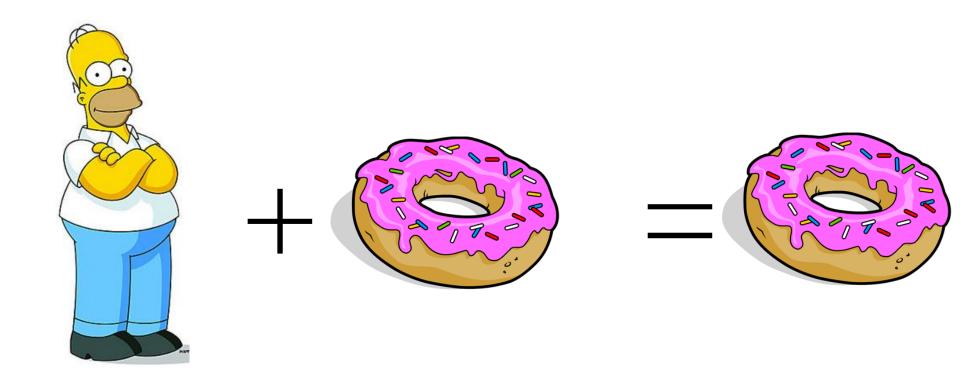
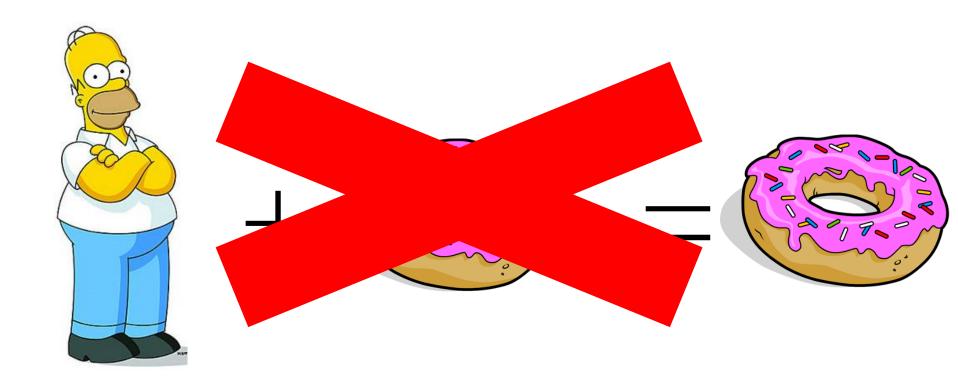


3rd STABLE ISOTOPE COURSE IN ECOLOGY AND ENVIRONMENTAL SCIENCES 2018

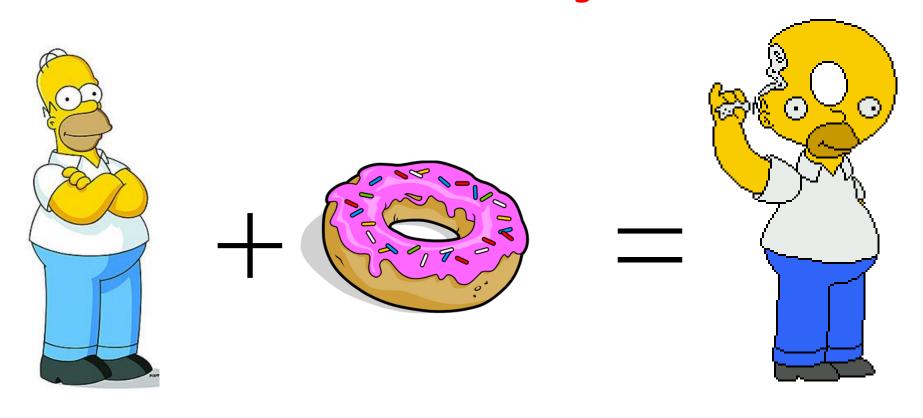

Isotopic Mixing Models (MixSIAR)

12-16 Noviembre

Joan Giménez Estación Biológica de Doñana


Why are stable isotopes useful?

- Variation exists
- You are what you eat


Why are stable isotopes useful?

- Variation exists
- You are what you eat

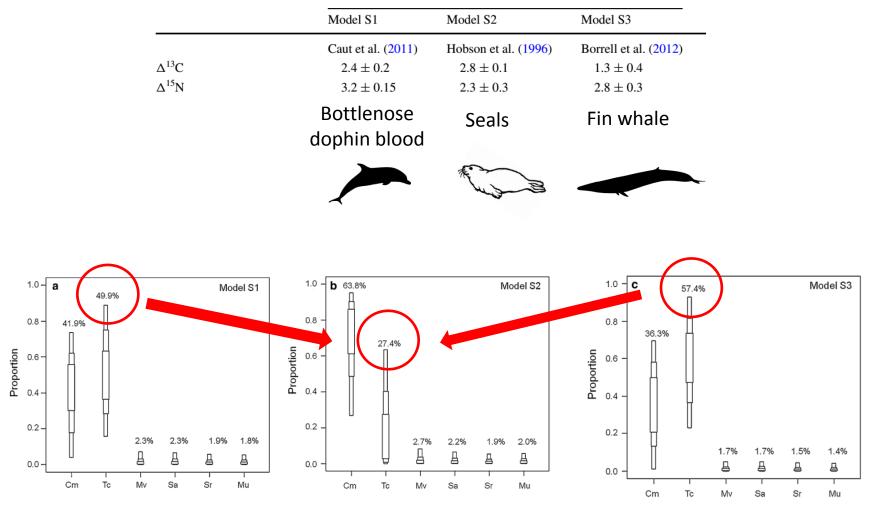
Why are stable isotopes useful?

- Variation exists
- You are what you eat + something

Diet-to-tissue discrimination factors (DTDF) or Trophic Enrichment factors (TEF)

Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors

ALEXANDER L. BOND¹ AND ANTONY W. DIAMOND


Ecological Applications, 21(4), 2011, pp. 1017–1023 © 2011 by the Ecological Society of America

+1‰ for C (DeNiro and Epstein 1978)

+3‰ for N (DeNiro and Epstein 1981)

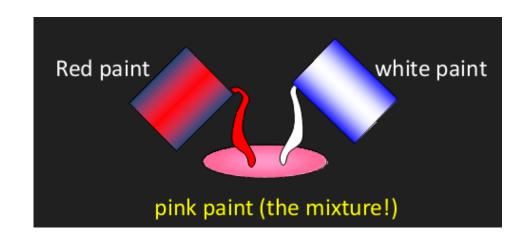
Considerable variation in isotopic discrimination factors as a function of:

- Extrinsic factors
 - e.g. diet quality or composition (McCutchan Jr. et al., 2003; Robbins et al., 2005)
- Intrinsic factors
 - e.g. taxa, (Caut et al., 2009; Vanderklift and Ponsard, 2003); Or age (Hobson and Quirk, 2014; Minagawa and Wada, 1984)).

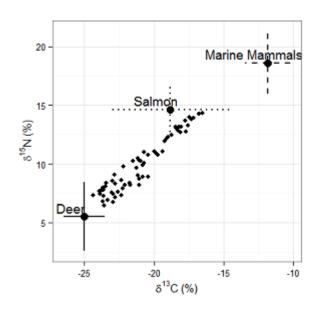
e.g. Kiszka et al. (2014) Mar Biol

APPLICATIONS Diet recontruction

"animals are what they eat + something"


The isotopic composition of an animal tissue reflects the contribution of dietary components with different isotopic compositions

(DeNiro and Epstein, 1978, 1981)


If we know:


- Stable isotope signature of potential preys
- Stable isotope signature of the predator
- We can estimate the proportion of each prey to the diet of the predator

Mass-balance mixing models

= Closer you are to a source, the more of it you're eating

Linear Mixing models

n isotope systems are used to determine the proportional contributions of n+1 sources to a mixture.

IsoSource

http://www.epa.gov/wed/pages/models.htm

Oecologia (2003) 136:261-269 DOI 10.1007/s00442-003-1218-3

ECOSYSTEMS ECOLOGY

Donald L. Phillips · Jillian W. Gregg

Source partitioning using stable isotopes: coping with too many sources

IsoSource

(Phillips and Gregg, 2003)

MixSIR

(Moore and Semmens, 2008)

SIAR

(Parnell et al., 2008)

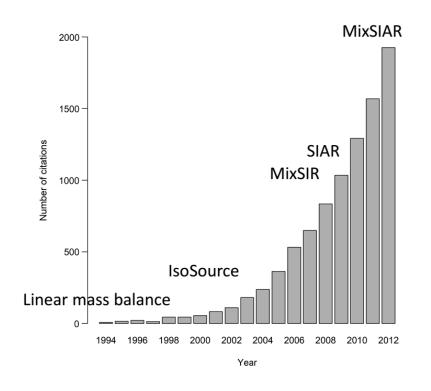
IstopeR

(Hopkins and Ferguson, 2012)

IsoWeb

(Kodoya et al, 2012)

SISUS


(Erhardt et al., 2012)

FRUITS

(Fernandes et al, 2014)

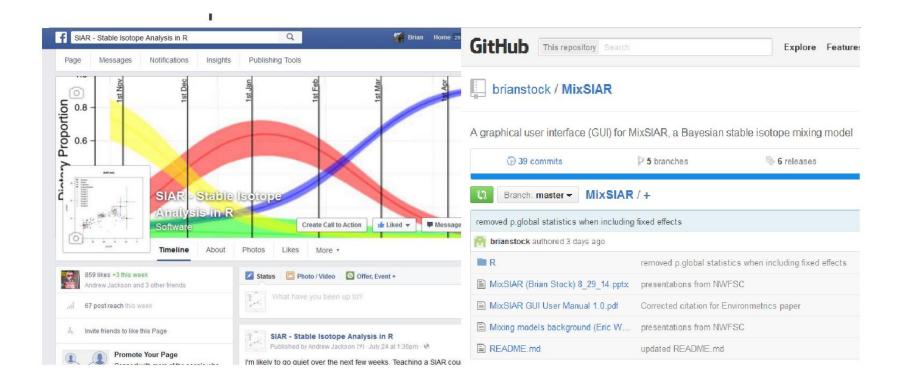
MixSIAR

- Researchers use mixing models a lot.

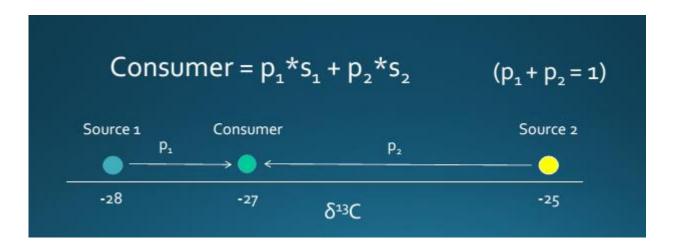
Pros of Bayesian mixing models

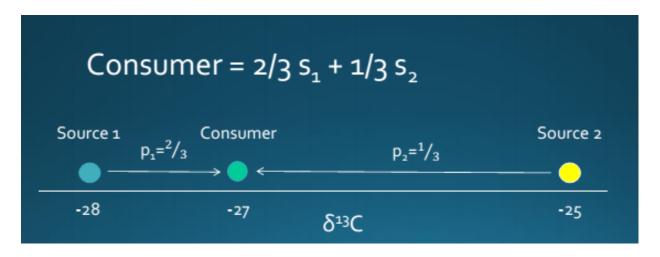
Firm statistical foundation

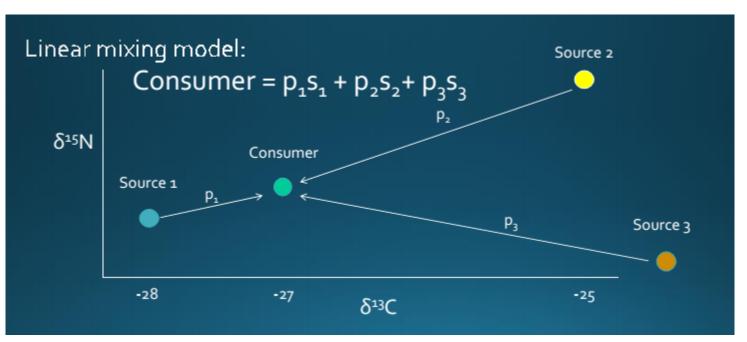
- Uncertainty in consumer, source, and TDF data

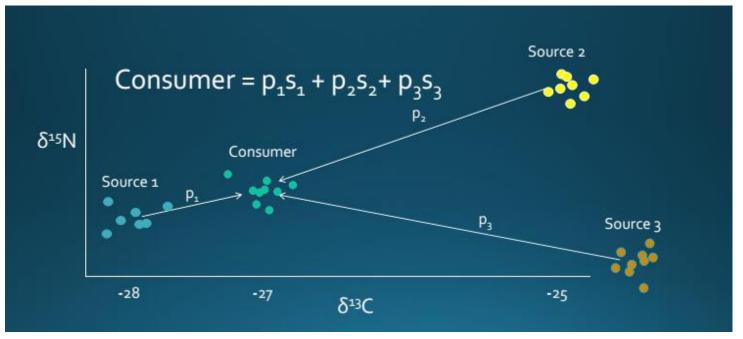

Biological complexity

- Differences due to covariates (e.g. sex, region, size)
- Non-biotracer data as priors (e.g. stomach/fecal contents, prey abundance)

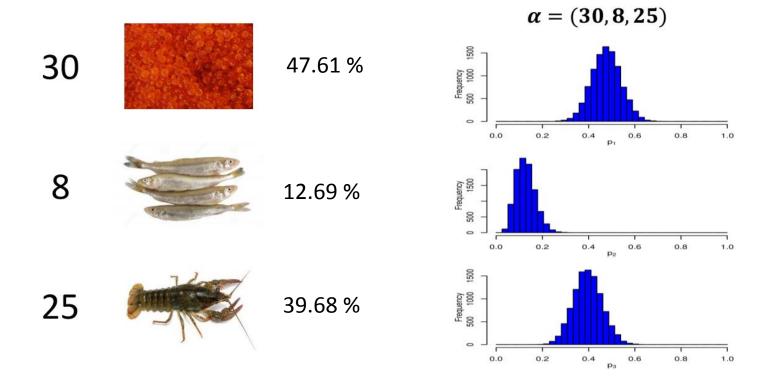

Remember:

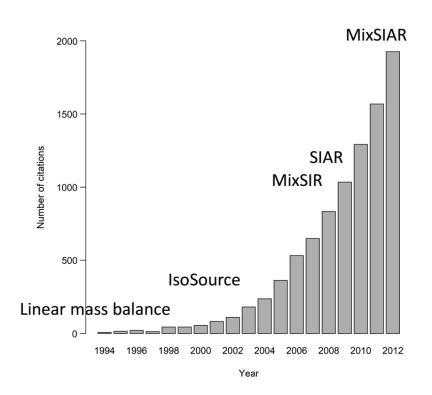

Garbage in, garbage out (e.g. many sources, 2 tracers)


- Many researchers using mixing models
- Many questions
- Many answers



Linear mixing model





Informative priors

MixSIR

(Moore and Semmens, 2008)

Ecology Letters, (2008) 11: 470-480

doi: 10.1111/j.1461-0248.2008.01163.x

LETTER

Incorporating uncertainty and prior information into stable isotope mixing models

Jonathan W. Moore^{1,2}**,† and Brice X. Semmens^{1,†}

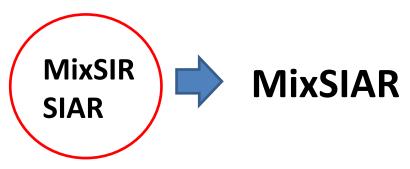
Abstract

Stable isotopes are a powerful tool for ecologists, often used to assess contributions of different sources to a mixture (e.g. prey to a consumer). Mixing models use stable

SIAR

(Parnell et al., 2008)

OPEN & ACCESS Freely available online

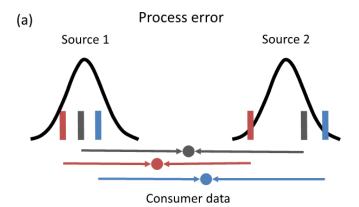


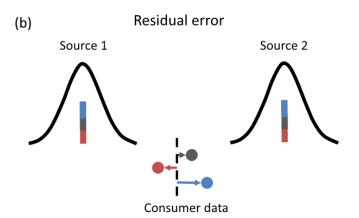
Source Partitioning Using Stable Isotopes: Coping with Too Much Variation

Andrew C. Parnell¹, Richard Inger², Stuart Bearhop², Andrew L. Jackson³*

MixSIAR software

- Written in R and JAGS (open source)
- Incorporates recent advances in mixing model methods


- Adresses variability in source and discrimination values
- Adresses variation in mixture population (random, fixed and continous effects)

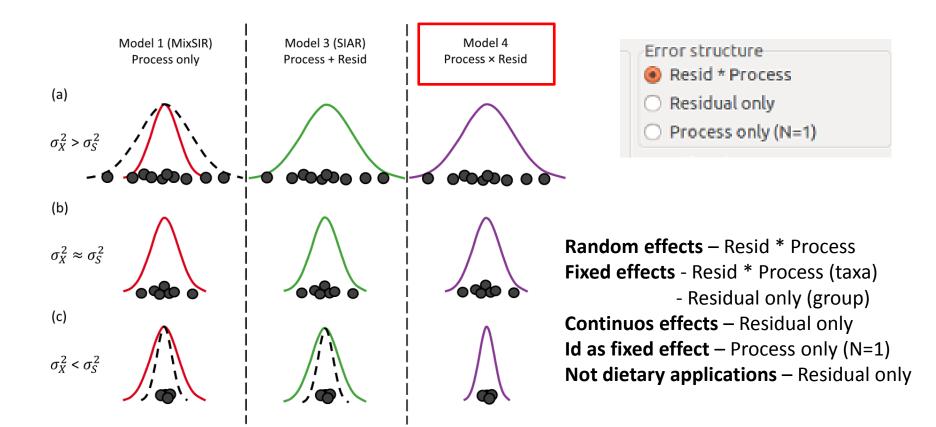

Statistical Reports

Ecology, 97(10), 2016, pp. 2562-2569 © 2016 by the Ecological Society of America

Unifying error structures in commonly used biotracer mixing models

BRIAN C. STOCK AND BRICE X. SEMMENS

Process error (variation in consumer tracer values due to the sampling process)


- Sampling error: Consumer tracer values are an average of a finite number of samples, and there will be some variability in these sample means due to chance.
- Specialization: Individual consumers may preferentially sample above or below the source mean, resulting in some consumers enriched or depleted.

Residual error

Other agents of consumer variability, such as individual differences in digestibility, assimilation efficiency, and metabolic rates

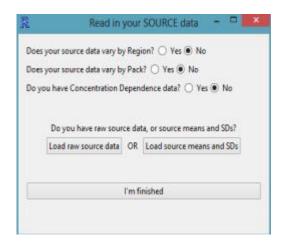
MixSIR = Process error only
SIAR = Process + Residual error

SIAR vs MixSIR = assumption aboout consumer variability

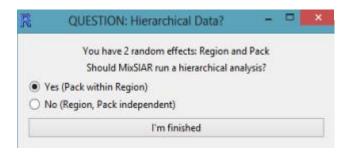
Model assumptions

- All diet sources are included in the model
- Discrimination factors correctly estimated
- Sources are sampled across tissue turnover period
- Geometry is critical

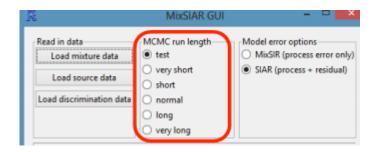
Application to other biotracers


- Fatty acids
- Compound-specific stable isotopes
- Element concentrations

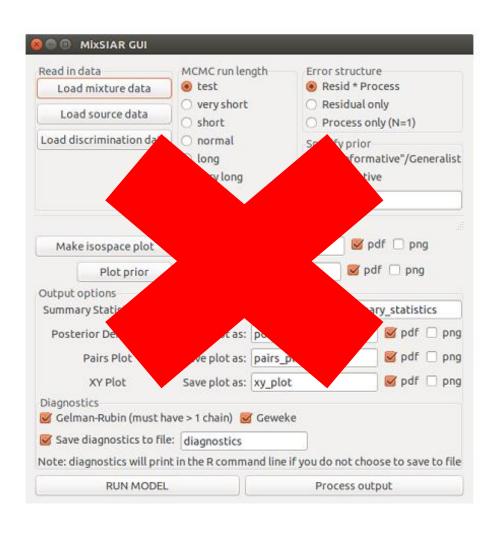
More biotracers = Better performance


8	MixSIAR GUI	- 0 ×					
Read in data Load mixture data Load source data	MCMC run length • test very short short	-Model error options MixSIR (process error only) SIAR (process + residual)					
Load discrimination data	onormal long very long						
Make isospace plot	Save plot as: isospace_	plot					
Output options Summary Statistics Save summary statistics to file: summary_statistics							
Posterior Density Plot	Suppress plot outp						
Pairs Plot	Suppress plot outp						
XY Plot	Suppress plot outp	out ☑ pdf ☐ png					
-Diagnostics Gelman-Rubin (must h	ave > 1 chain)	Iberg-Welch 🗹 Geweke					
✓ Save diagnostics to file.							
Note: diagnostics will print RUN MODEL	in the K command line if	you do not choose to save to file Process output					

	MCMC run length test very short short		Error structure Resid * Process			
ad mixture data			Residual only Process only (N=1)			
oad source data						
discrimination data	normal			y prior	.,,,,,,	
0	○ long ○ very long		"Uninformative"/Generalist			
C			○ Informative			
		Y				
Plot prior Sa	ve plot as: [isospace_p prior_plot	lot	⊠ pd]
Plot prior San t options nary Statistics Save	ve plot as: [p	prior_plot	file: [⊠ pd	f png	
Plot prior San t options nary Statistics Save	ve plot as: [r	prior_plot	file: [⊠ pd	f 🗆 png	
Plot prior San t options nary Statistics Save terior Density Plot S	ve plot as: [p	prior_plot statistics to posterior_	file: [⊠ pd	f png	png
Plot prior Sant options hary Statistics Saw terior Density Plot S Pairs Plot S	ve plot as: pe summary s	prior_plot tatistics to posterior_ pairs_plot	file: [⊠ pd	f png ry_statistic	s png png
Plot prior Sant options hary Statistics Save terior Density Plot S Pairs Plot S XY Plot S ostics	ve plot as: pe summary s save plot as: save plot as: save plot as:	prior_plot statistics to posterior_ pairs_plot xy_plot	file: [⊠ pd	f □ png ry_statistic Ø pdf □	png
Plot prior Sant options hary Statistics Save terior Density Plot S Pairs Plot S XY Plot S	ve plot as: pe summary s save plot as: save plot as: save plot as:	prior_plot statistics to posterior_ pairs_plot xy_plot	file: [⊠ pd	f □ png ry_statistic Ø pdf □	png
Plot prior Sant options hary Statistics Save terior Density Plot S Pairs Plot S XY Plot S ostics	ve plot as: e summary s ave plot as: ave plot as: ave plot as:	prior_plot statistics to posterior_ pairs_plot xy_plot	file: [⊠ pd	f □ png ry_statistic Ø pdf □	png
Plot prior Sant options hary Statistics Save terior Density Plot S Pairs Plot S XY Plot S	ve plot as: pe summary s ave plot as: ave plot as:	prior_plot tatistics to posterior_ pairs_plot	file: [⊠ pd	f □ png ry_statistic Ø pdf [Ø pdf [


Source data options

Hierarchical/Nested data


MCMC parameters

	Chain Length	Burn-in	Thin	# Chains	Est. runtime
test	1,000	500	1	3	5 sec
very short	10,000	5,000	5	3	3 min
short	50,000	25,000	25	3	15 min
normal	100,000	50,000	50	3	30 min
long	300,000	200,000	100	3	90 min
very long	1,000,000	500,000	500	3	5 hours
extreme	3,000,000	1,500,000	500	3	15 hours

Error structure

We are not going to use the GUI!!!!

The script version advantages:

- 1. Repeatability
- 2. Speed
- 3. Installation easy

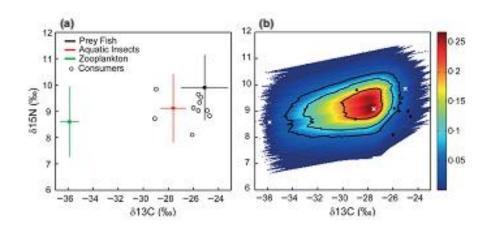
Stable Isotope Geometry

Methods in Ecology and Evolution

British Ecological Society

Methods in Ecology and Evolution 2013, 4, 612-618

doi: 10.1111/2041-210X.12048


To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons

James A. Smith1*, Debashish Mazumder2, Iain M. Suthers1 and Matthew D. Taylor1,3

- Quantitative method for determining whether a proposed mixing model is likely to explain the isotopic signatures of all consumers, before the model is run.
- To identify consumers for exclusion or to reject a model outright.

 This point-in-polygon assumption is not inherent in the Bayesian mixing models, because the source data are distributions not average values, and these models will quantify source contributions even when the solution is very unlikely.

