

3rd STABLE ISOTOPE COURSE IN ECOLOGY AND ENVIRONMENTAL SCIENCES 2018

Niche Metrics

12-16 Noviembre

Joan Giménez Estación Biológica de Doñana

What is a Species' Niche?

Grinelliang niche:

Grinell (1917) understood the niche as a subdivision of the habitat containing the **environmental conditions** that enable individuals os a species to survive and reproduce, based on **broad-scale variables** (climate). **Scenopoetic axe.**

Eltonian niche:

Elton (1927) emphasised the functional role of a species in a community, especially its position in food webs, based on **fine-scale variables** (nutrients) that may be consumed or modified by the species. **Bionomic axe**.

Hutchinson niche:

Hutchinson (1957) defined the species niche as the **n-dimensional volume in the environmental space** where a species can maintain a viable population and persist along time.

Dimension 1

A niche for isotopic ecology

Seth D Newsome^{1*}, Carlos Martinez del Rio², Stuart Bearhop³, and Donald L Phillips⁴

isotopic niche as an area (in δ -space) with isotopic values (δ -values) as coordinates

429

Table 1. A summary of common isotope systems and expected patterns in δ -values used to examine scenopoetic and bionomic dimensions of ecological niche space

Gradient	lsotope system	High δ -values	Low δ -values	Scenopoetic	Bionomic
Trophic level	δ^{13} C / δ^{15} N	High levels	Low levels		1
C3–C4 Vegetation	δ ¹³ C	C₄ plants	C ₃ plants		1
Marine-terrestrial	δ^{15} N / δ^{13} C / δ^{34} S	Marine	Terrestrial	\checkmark	1
Latitude (terrestrial)	δ^2 H / δ^{18} O	Low latitudes	High latitudes	1	
Latitude (marine)	δ^{13} C / δ^{15} N	Low latitudes	High latitudes	\checkmark	
Altitude	δ ¹³ C	High altitudes	Low altitudes	1	
Altitude	$\delta^2 H$	Low altitudes	High altitudes	1	
Inshore-offshore	δ¹³C	Inshore	Offshore	\checkmark	
Benthic–pelagic	δ ¹³ C / δ ³⁴ S	Benthic	Pelagic	1	1
Aridity	δ^{13} C / δ^{15} N	Xeric	Mesic/hydric	\checkmark	
Eutrophication	δ ¹⁵ N / δ ¹³ C	Polluted	Pristine	1	
Temperature	δ ¹⁸ O	Cooler	Warmer	1	
Geologic substrate	δ^{87} Sr	Young rocks	Old rocks	\checkmark	
Oxic-anoxic	$\delta^{\rm I5}N$ / $\delta^{\rm I3}C$ / $\delta^{\rm 34}S$	Oxic	Anoxic	1	
Methanogenesis	δ ¹³ C	Photosynthetic	Methanogenic	\checkmark	

APPLICATIONS

Niche comparison (SIBER)

- Bayesian Ellipses (= isotopic niche)
- ✓ Overlap between isotopic niches.

* Stable Isotope Bayesian Ellipses in R (Jackson et al., 2011)

APPLICATIONS

Trophic structure topology

Layman metrics

Ecology, 88(1), 2007, pp. 42–48 © 2007 by the Ecological Society of America

CAN STABLE ISOTOPE RATIOS PROVIDE FOR COMMUNITY-WIDE MEASURES OF TROPHIC STRUCTURE?

Craig A. Layman,^{1,5} D. Albrey Arrington,² Carmen G. Montaña,³ and David M. Post⁴

- 1) δ^{15} N Range (NR): Distance between the two species with the most enriched and most depleted δ^{15} N values. Representation of vertical structure within a food web. Larger range in δ^{15} N among consumers suggests more trophic levels and thus a greater degree of trophic diversity.
- 2) δ^{13} C range (CR): Distance between the two species with the most enriched and most depleted δ^{13} C values. Increased CR would be expected in food webs in which there are multiple basal resources with varying δ^{13} C values, providing for niche diversification at the base of a food web.
- 3) Total area (TA): Convex hull area encompassed by all species in δ^{13} C δ^{15} N bi-plot space. Measure of the total amount of niche space occupied, and thus a proxy for the total extent of trophic diversity within a food web.

Figure 1 Each symbol represents an individual snapper and the lines represent the convex hull area used as a measure of niche width. White triangles are individuals from an unfragmented site, grey triangles from a partially fragmented site, and black triangles from a highly fragmented site (Cross Harbour, Sucking Fish, and Marsh Harbour, respectively, in Table 1).

Measure of the average degree of trophic diversity within a food web.

Better reflect the overall degree of trophic diversity in the food web.

5) Mean nearest neighbor distance (NND): Mean of the Euclidean distances to each species' nearest neighbor in bi-plot space, and thus a measure of the overall density of species packing.

Food webs with a large proportion of species characterized by similar trophic ecologies will exhibit a smaller NND (increased trophic redundancy) than a web in which species are, on average, more divergent in terms of their trophic niche.

6) Standard deviation of nearest neighbor distance (SDNND): A measure of the evenness of species packing in bi-plot space that is less influenced than NND by sample size. Low SDNND values suggest more even distribution of trophic niches.

Figure 1 Each symbol represents an individual snapper and the lines represent the convex hull area used as a measure of niche width. White triangles are individuals from an unfragmented site, grey triangles from a partially fragmented site, and black triangles from a highly fragmented site (Cross Harbour, Sucking Fish, and Marsh Harbour, respectively, in Table 1).

Measure of the average degree of trophic diversity within a food web.

Better reflect the overall degree of trophic diversity in the food web.

5) Mean nearest neighbor distance (NND): Mean of the Euclidean distances to each species' nearest neighbor in bi-plot space, and thus a measure of the overall density of species packing.

Food webs with a large proportion of species characterized by similar trophic ecologies will exhibit a smaller NND (increased trophic redundancy) than a web in which species are, on average, more divergent in terms of their trophic niche.

6) Standard deviation of nearest neighbor distance (SDNND): A measure of the evenness of species packing in bi-plot space that is less influenced than NND by sample size. Low SDNND values suggest more even distribution of trophic niches.

Figure 1 Each symbol represents an individual snapper and the lines represent the convex hull area used as a measure of niche width. White triangles are individuals from an unfragmented site, grey triangles from a partially fragmented site, and black triangles from a highly fragmented site (Cross Harbour, Sucking Fish, and Marsh Harbour, respectively, in Table 1).

Measure of the average degree of trophic diversity within a food web.

Better reflect the overall degree of trophic diversity in the food web.

5) Mean nearest neighbor distance (NND): Mean of the Euclidean distances to each species' nearest neighbor in bi-plot space, and thus a measure of the overall density of species packing.

NND (increased trophic redundancy) = large proportion of species characterized by similar trophic ecologies

6) Standard deviation of nearest neighbor distance (SDNND): A measure of the evenness of species packing in bi-plot space that is less influenced than NND by sample size.

SDNND values = even distribution of trophic niches.

Figure 1 Each symbol represents an individual snapper and the lines represent the convex hull area used as a measure of niche width. White triangles are individuals from an unfragmented site, grey triangles from a partially fragmented site, and black triangles from a highly fragmented site (Cross Harbour, Sucking Fish, and Marsh Harbour, respectively, in Table 1).

Measure of the average degree of trophic diversity within a food web.

Better reflect the overall degree of trophic diversity in the food web.

5) Mean nearest neighbor distance (NND): Mean of the Euclidean distances to each species' nearest neighbor in bi-plot space, and thus a measure of the overall density of species packing.

NND (increased trophic redundancy) =
 large proportion of species characterized
 by similar trophic ecologies

6) Standard deviation of nearest neighbor distance (SDNND): A measure of the evenness of species packing in bi-plot space that is less influenced than NND by sample size.

SDNND values = even distribution of trophic niches.

Figure 1 Each symbol represents an individual snapper and the lines represent the convex hull area used as a measure of niche width. White triangles are individuals from an unfragmented site, grey triangles from a partially fragmented site, and black triangles from a highly fragmented site (Cross Harbour, Sucking Fish, and Marsh Harbour, respectively, in Table 1).

Journal of Animal Ecology

Journal of Animal Ecology 2011, 80, 595-602

doi: 10.1111/j.1365-2656.2011.01806.x

Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R

Andrew L. Jackson¹*, Richard Inger², Andrew C. Parnell³ and Stuart Bearhop²

Ecological Indicators 95 (2018) 32-40

Check for updates

Original Articles

Living apart together: Niche partitioning among Alboran Sea cetaceans

Joan Giménez^{a,*}, Ana Cañadas^b, Francisco Ramírez^c, Isabel Afán^d, Susana García-Tiscar^e, Carolina Fernández-Maldonado^f, Juan José Castillo^g, Renaud de Stephanis^h

A new probabilistic method for quantifying *n*-dimensional ecological niches and niche overlap

Heidi K. Swanson,^{1,4} Martin Lysy,² Michael Power,¹ Ashley D. Stasko,¹ Jim D. Johnson,³ and James D. Reist³

 Received: 30 November 2016
 Revised: 16 May 2017
 Accepted: 4 June 2017

 DOI: 10.1002/agc.2814
 DOI: 10.1002/agc.2814
 DOI: 10.1002/agc.2814

WILEY

RESEARCH ARTICLE

Towards the identification of ecological management units: A multidisciplinary approach for the effective management of bottlenose dolphins in the southern Iberian Peninsula

Joan Giménez¹ | Marie Louis^{2,3} | Enrique Barón⁴ | Francisco Ramírez¹ | Philippe Verborgh⁵ | Pauline Gauffier⁵ | Ruth Esteban⁵ | Ethel Eljarrat⁴ | Damià Barceló⁴ | Manuela G. Forero¹ | Renaud de Stephanis⁴

