

Analysing the complexity of marine food webs using amino acid stable nitrogen isotopes: from trophic positions to diets

Antonio Bode

Centro Oceanográfico de A Coruña IEO-CSIC

antonio.bode@ieo.es

Estación Biológica de Doñana, 24 February 2022

Program

- Objectives: origin, modification and fate of C and N
- Advantages over bulk measurements
- the basis: differential fractionation
- Molecular and isotopic analysis: molecular isolation
- Estimation models: trophic position and other indicators
- Aplications: examples from pelagic ecosystems
- Progress: multitrophic models
- Diet/habitat fingerprinting: C and N in amino acids

origin, modification and fate of C and N

Quantifying the structure and function of food webs

• trophic position (TP)

- food chain length (= TP top predator)
- heterotrophic resynthesis (ΣV)
- microbial food web contribution
- diet quality and nitrogen recycling effects

Definitions

Bulk Stable Isotope Analysis = BSIA

- natural abundance of stable isotopes in bulk tissues / organisms
- minimal sample preparation (drying, grinding)
- elemental analyzer -> mass espectrometer
- lower costs
- popular and accesible

Compound-specific amino acid analysis = CSIA-AA, CSIAA

natural abundance of stable isotopes in amino acids
requires prior separation of amino acids (hidrolysis, esterification, derivatization)

- gas (liquid) chromatograph -> mass espectrometer
- higher costs
- available only at lew laboratories

TP estimations using $\delta^{\rm 15} {\rm N}$

Advantages

AA metabolism

trophic AA: transamination and oxidative deamination

source AA: oxidation from Phe to Tyr

McMahon & McCarthy, 2016

example of $\delta^{15}N_{AA}$ in mesopelagic fish

Ohkouchi et al. 2017

a short history

- <u>McClelland & Montoya, 2002</u> -> AA_t AA_s distinction; trophic implications
- <u>Popp et al. 2007</u> -> AA_t AA_s definition; aplication to predator*TP*
- <u>Chikaraishi et al. 2009</u> -> *TP* estimation model; definition of universal $\beta_{t/s}$ and $TDF_{t/s}$
- <u>Nielsen et al. 2015</u> -> *TDF* review; averaged *TDF*
- <u>Bradley et al. 2015</u> -> multi-*TDF* model
- <u>McMahon & McCarthy, 2016</u> -> diet and N excretion mode affect *TDF*
 - <u>Decima et al. 2017</u> -> *TDF*_{Ala} 'visibilizes' microbial trophic steps
- <u>Ohkouchi et al. 2017</u> -> review of *TDF* patterns
 - Ishikawa et al. 2018 -> Met as diagnostic for source primary producers
 - <u>Ramirez et al. 2021</u> -> review of $\beta_{t/s}$ patterns
 - García-Seoane et al. (in review) -> weighted average of $\beta_{t/s}$

terrestrial aquatic plants algae

gas chromatography (GC)

- sampling tissues (muscle, ...)
- conservation / drying
- preparation:
 - homogenization (grinding)
 - (purificaction: e.g. removal of lipids, carbonates,...)
 - hidrolysis
 - esterification
 - derivatization
- analysis:
 - gas chromatography (GC)
 - mass espectrometry (Isotope Ratio Mass Spectrometry -IRMS)

GC-IRMS chromatograms

Ohkouchi et al. 2017

example of process flow

McCarthy et al. 2013

preparation - hidrolysis - esterification - derivatization

sample preparation and standard addition

hidrolysis

esterification

evaporation

derivatization

chromatography and IRMS

preparation - hidrolysis - esterification - derivatization

heating blocks and evaporators using N_{2}

filtration-ash removal

N₂ difussion tip

hidrolysis vial

esterification-derivatization vial

analysis vial

IEO-A Coruña

ACC AVEN

trophic position

trophic AA (t): Glu (Glx = Glu+Gln) source AA (s): Phe

$$\beta_{Glu/Phe} = \delta^{15} N_{Glu} - \delta^{15} N_{Phe} \longrightarrow 3.4\%$$

in primary producers
$$TDF_{Glu/Phe} = \Delta (\delta^{15} N_{Glu} - \delta^{15} N_{Phe})$$

between trophic levels
in terrestrial ecosystems

trophic position

(b) Trophic enrichment in ¹⁵N

trophic position

¿why Glu & Phe?

	β _{x-Phe}		Δ	Δ	
	Average	1σ	Average	1(σ)	
Bulk	2.6	1.3	2.1	1.3	
Alanine	3.2	1.2	6.1	2.1	
Glycine	-2.3	3.4	3.7	3.9	
Valine	4.6	1.2	5.0	1.7	
Leucine	2.3	1.6	4.8	2.0	
Isoleuicine	2.9	0.8	4.8	1.7	
Proline	3.1	1.7	6.1	1.6	
Serine	-4.6	2.2	3.6	3.0	
Methionine	-2.0	0.6	0.5	0.6	
Glutamic acid	3.4	0.9	8.0	1.2	
Phenylalanine	_	_	0.4	0.5	

 $\Delta_{\rm Glu}$ highest discrimination $\Delta_{\rm Phe}$ lowest variability

between trophic levels

 $\beta_{\it Glu/Phe}$ less variable

Aplications

trophic position

Aplications

Aplications

TP_{bulk} vs. TP_{CSIA}

Comparing different *TP* estimates

a,b T

Glx

other trophic indicators

- food chain lenght = TP_{max}
- heterotrophic resynthesis (degradation index)
- baseline identification = trophic systems
- diazotrophic contribution
- microbial system contribution
- diet indicators

food chain lenght (FCL)

 $FCL = TP_{max}$ = number of trophic steps from primary producers to top predators

- food web dynamics
- trophic cascades
- relationships between diversity and function

Aplication

food chain lenght

Ruiz-Cooley et al., 2017

Heterotrophic resynthesis (degradation index = ΣV)

Ala, Asp, Glu, Ile, Leu, Pro

McCarthy et al., 2007

Aplication

Heterotrophic resynthesis

ΣV in plankton vs. sediments

baseline identification

baseline comparison for different TPs

Aplication

baselines

Diazotrophy contribution (%N_{fix})

Mompeán et al., 2016

Aplication

Diazotrophy contribution

uniform diazotrophic contribution in all fractions

microbial contribution to *TP* (%microbial)

microbial food web 'invisible' for *TP_{Glu}*

Decima et al. 2017

Gutiérrez-Rodríguez et al. 2014

microbial contribution to TP

Aplication

microbial contribution to TP

22°N Hawaii 21° Latitude ·Alenuihāhā · oligotrophic The Big Island of Hawaii bloom ** 19° 'In' Station (Opal location 158°W 157° 156° 155° Longitude

increase of predation on protozoa in the bloom zone

Decima & Landry 2020

Aplication

microbial contribution to TP

micronekton

%microbial = 6-21%

Neonesthes capensis Photostomias quernei Taaningichthys bathyphilus Borostomias elucens Malacosteus niger Stomias boa Bathylagus euryops Benthosema glaciale Cyclothone livida Polyipnus polli Vinciguerria nimbaria Chauliodus danae Argyropelecus hemigymnus Scopelogadus beanii Sternoptyx diaphana Chauliodus sloani Cvclothone acclinidens Argyropelecus sladeni Sigmops bathyphilus Sigmops elongatus Lobianchia dofleini Cyclothone pseudopallida Cyclothone microdon Cyclothone braueri Cyclothone alba

Bode et al. 2021c

microbial contribution to TP

McMahon & McCarthy, 2016

diet indicators

example:

Aplication

diet indicators

$TP_c = 1 + (\delta^{15}N_t - \delta^{15}N_s - \beta_{t/s}) / TDF_{t/s}$

- multitrophic models
 - multi-TDF
 - multi- β
- error propagation

multi-*TDF* & multi- β models

simulating variations in *TDF* and/or β

multi-TDF models

food quality

TDF varies with diet quality and N excretion modes

McMahon & McCarthy 2016

multi-TDF models

Bode et al. 2021b

44

Aplication

multi-TDF models

5

а

multi- β models

multi- β models

primary producer $\delta^{15}N_{AA}$ patterns

multi- β models

When there are two primary producer (PP) sources

 $TP = 1 + (\delta^{15}N_{t} - \delta^{15}N_{s} - \beta_{mix}) / TDF$ $TP = (x+1) + (\delta^{15}N_{t} - \delta^{15}N_{s} - x TDF_{1} - \beta_{mix}) / TDF_{2}$

Ramirez et al. 2021

 $sd_{TP}^{2} = (1/TDF)^{2} sd_{\delta}^{15}N_{t} + (-1/TDF)^{2} sd_{\delta}^{15}N_{s} + (1/TDF)^{2} sd_{\beta}^{2} + [-1/TDF^{2} (\delta^{15}N_{t} - \delta^{15}N_{s} + \beta)]^{2} sd_{TDF}^{2}$

Aplication

micronekton

Bode et al. 2021b

Diet identification

carbon in: • amino acids

• fatty acids

Diet/habitat identification carbon and nitrogen in amino acids

AAs grouped by C or N TDFs

Diet/habitat identification

C in essential amino acids

Larsen et al. (2020)

Aplication

C in amino acids

Moroteuthopsis longimana (=Kondakovia longimana)

and other giant squid species

 $\delta^{\rm 13}{\rm C}_{\rm AA}$ used for habitat identification

Cherel et al. 2019

53

Aplication

C and N in amino acids

Future developments:

Grupo de investigación

Ecología Planctónica y Biogeoquímica (EPB)

IEO-CSIC Centro Oceanográfico de A Coruña

