Atmospheric and Surface Water Isotopes: Processes and Applications

Gabe Bowen gabe.bowen@utah.edu

Why Water in the Atmosphere?

- Precipitation is the source of freshwater in hydro- and eco-systems
- Most of the isotopic variation we see in freshwater systems is derived from atmospheric processes

The Global Meteoric Water Line

Clark and Fritz, 1997; GMWL defined by Craig, 1961

Rayleigh Distillation

- A processes by which fractionation (of isotopes, elements, molecules, elephants) leads to a change in 2component reactant mixture
- Is it Rayleigh Distillation?
 - Open system
 - No addition of material
 - Rapidly and continuous removal of product
 - Product is fractionated relative to the reactant
- The Rayleigh equation describes the composition of the reactant pool as a function of reaction progress:

$\boldsymbol{R} = \boldsymbol{R}_{\boldsymbol{0}} \boldsymbol{f}^{(\alpha - 1)}$

R and **R**₀ are current and initial isotope ratios **f** is fraction of reactant remaining

Rayleigh Distillation

Rayleigh Distillation

Rayleigh Distillation and Precipitation

 Precipitation formed from condensation of cloud vapor •Equilibrium process (free atmosphere RH ≈ 100%) •Equilibrium fractionation But one element of complexity...

Rayleigh Distillation and Precipitation

!!!This does not cause the 'temperature effect'!!!

As condensation proceeds, the temperature of the remaining cloud decreases.

> Thus, α increases, resulting in a greater difference between cloud and rain H₂O

- 🔹 at 20° C
 - ε²Η = 74‰
 - $\epsilon^{18}O = 9.2\%$
 - $\epsilon^{2}H / \epsilon^{18}O = 8.0$
- 🔹 at 80° C
 - $\bullet \epsilon^2 H = 38\%$
 - $\epsilon^{18}O = 4.5\%$
 - $\epsilon^{2}H / \epsilon^{18}O = 8.4$

Equilibrium enrichment factors for H isotopes are ~8 x those for O isotopes

The Global Meteoric Water Line

Clark and Fritz, 1997; GMWL defined by Craig, 1961

Phase Change Reaction: Craig-Gordon

- Open air
 - Well-mixed
 - Large
- Transition zone (TZ)
 - Turbulently mixed
 - Decreasing humidity upwards
- Boundary layer (BL)
 - Thin, well-mixed layer
 - 100% RH
- Liquid
 - Large (ocean) or small (droplet) body of water
 - Mixed or stratified

Kinetic Effect

• Δε = (1-h)n θC_D

- h = relative humidity
- n = relative strength of kinetic vs. turbulent transport
- θ = perturbation of boundary layer humidity
- C_D = ratio of effective diffusion coefficients for isotopologues
 - H = 25.1‰
 - O = 28.5‰

Let's discuss...

Equilibrium and kinetic enrichment factors

Gat, 1996

Equilibrium and kinetic enrichment factors

- The net ratio of ²H and ¹⁸O isotope effects is a blend of the Equilibrium and Kinetic ratios, typically between 3 and 8
- The coupled ²H/¹⁸O system gives us a "proxy" for kinetic fractionation...

deuterium excess

Deuterium excess

$d = \delta^2 H - 8 \times \delta^{18} O$

Crystal Tulley-Cordova, unpub.

GMWL Intercept

- Global precipitation
 - δ²H = -22‰
 - $\delta^{18}O = -4\%$
- What is the isotopic composition of global evaporation?
- So global evaporation has a d value of ~ +10‰
 - Implies conditions of evaporation
 - n = 0.5
 - $\theta = 0.5$

The Global Meteoric Water Line

Clark and Fritz, 1997; GMWL defined by Craig, 1961

The slope of the GMWL is 8

Kinetic fractionation gives a *d* value for the (dominant) oceanic evaporation flux of +10‰, setting GMWL intercept

Precipitation Isotope Patterns and Rayleigh Distillation

 Rayleigh distillation causes precipitation isotope ratios to get lower as air gets drier

What does this imply about the spatial distribution of precipitation isotope ratios?

Patterns of Climate \rightarrow Patterns of Water Isotope Ratios

A Salt Lake City Example

Temporal Variation - Meterological

Coplen et al., 2008, GRL

Synoptic-scale systems (Sandy)

October 22-31, 2012
* ET transition October 29
* Landfall (NJ) early on October 30
Maximum intensity category 3, category 1 at landfall
2nd costliest Hurricane in US history

Crowdsourced Sampling Network

The f

Sample Suite

Good et al., PLoS ONE, 2014

Spatiotemporal Isotope Patterns

Distinct regional isotopic patterns as storm moves northwest

Rayleigh Rainout Model

Spatial Evolution of Storm Water Cycling

- Superstorm Sandy up to 80% rainout-`efficient'
- Over 2 days disconnects from Atlantic, adds continental moisture

Good et al., 2014, Sandy edited volume

Pacific North American Pattern

http://www.emc.ncep.noaa.gov/gmb/ssaha/

PNA Pattern and Precipitation δ¹⁸O

Liu et al., 2013, Clim. Dynamics

A PNA Isotope Index

Liu et al., Earth and Planetary Science Letters, 2011

PNA index

Paleo-PNA

Liu et al., Nat. Comm., 2014

Multiple Sources of ET

Water Isotope Tracers

- Stable H and O isotopes inherent tracers with welldocumented, well-understood behavior in the water cycle
- Transpiration does not fractionate

• $\delta_{vapor} = \delta_{liquid} = \delta_{precipitation}$

2 Approaches to ET Separation

- Measure vapor
 - + Directly assess ET flux
 - Difficult at large scales

Griffis et al., 2010, *B-LM*
2 Approaches to ET Separation

Measure liquid

- + Can integrate over large areas
- May not `see' all processes

Ecohydrologic Connectivity

 Water in soils and plants may not be same water that enters aquifers and rivers

Brooks et al., 2009, Nat. Geoscience

Can we Combine Approaches?

- $\ensuremath{^{\scriptsize \ensuremath{\bullet}}}$ Need global estimates of δ for river water and ET
- Where can we get them?
 - Ocean and atmosphere mass-balance

$$\begin{split} dH_2O_0/dt &= 0 = P_0 + Q - E_0 \\ d\delta_0/dt &= 0 = P_0^*\delta_{P_0} + Q^*\delta_Q - E_0^*\delta_{E_0} \\ dH_2O_a/dt &= 0 = E_0 + ET - P_0 - P_c \\ d\delta_a/dt &= 0 = E_0^*\delta_{E_0} + ET^*\delta_{E_T} - P_0^*\delta_{P_0} - P_c^*\delta_{P_C} \end{split}$$

Constraints

Good data exist on bulk water fluxes (P, E, ET, Q)
 Precipitation isotope composition from isoscapes

The Evaporation Isotope Problem

 Excellent model for estimating δ value of E_o, but you need to know surface layer δ_a

Figure 3 The Craig-Gordon evaporation model.

Gat, 1996, AREPS

New Satellite-Based δ_a Isoscape

Good et al., 2015, GRL

New Estimates of Global $\delta_{Q'}$, δ_{Eo}

Good et al., 2015, GRL

Global Analysis

What combinations of T, soil E, open-water E, and connectivity give the estimated global values

Good, Noone and Bowen, 2015, Science

Kernel Density Examples

Good, Noone and Bowen, 2015, Science

Global Result

- Globally, transpiration majority of ET but not 90%
- Low connectivity of soil and surface waters suggests dominance of preferential flow
- This, + the fact that >60% of continental evaporation occurs in soils, compromises the lakebased ET separation method

Good, Noone and Bowen, 2015, Science

Catchment water balance

 $P = R + E + T + \Delta S$

Storm Hydrograph

- Accurate rainfall-runoff models are one of the fundamental goals of catchment hydrology
 - Flood control
 - Water management
 - Water quality
- Summarized in terms of storm hydrograph

Rainfall routing

How is storm precipitation delivered to streams?

- Overland flow
- Interflow
- Groundwater
 recharge/baseflow
- What are the transit times associated with these flowpaths?

www.hydro.washington.edu

Hydrograph separation

 Given any conservative tracer that is present in different abundance in *pre-event* and *event* water, the fraction of pre-event water in storm flow at any time is

$$f_{pe} = \frac{C_s - C_e}{C_{pe} - C_e}$$

- Major assumption: C_e and C_{pe} are constant and can be accurately characterized
- Isotope hydrograph separation takes advantage of temporal variation in precipitation δ values

"Old water paradox"

		Catchment		Percentage pre-event water	
Study	Location	area (ha)	Tracer	peak	volume
Jordan (1994)	Switzerland	3.6	¹⁸ O		45, 75
Waddington et al. (1993)	Ontario	160	¹⁸ O	87,93	
McDonnell et al. (1991)	New Zealand	3.8	D	92-100	
O'Gunkoya & Jenkins (1991)*	United Kingdom	1000	D		54-90
McDonnell et al. (1990)	New Zealand	310	D		21-33
Nolan and Hill (1990)	California	1060	D		57
Bonell et al. (1990)	New Zealand	218	D		59
		310	D	38	38 to >97
Blowes and Gillham (1988)	Ontario	0.75	¹⁸ O	9, 45	22, 50
Turner et al. (1987)	W. Australia	. 82	¹⁸ O, D		69-95
Herrman et al. (1987)*	Germany	76	¹⁸ O		84
Rodhe (1987)	Sweden	3	0 ⁸¹		81, 87
		4	¹⁸ O		81, 96
	· · · ·	17	18 ₀	87	
		50	¹⁸ O		85-99

"Old water paradox"

- Even in small, steep catchments, most storm flow is "old" water
- Mean residence time of water in catchments is much longer than implied by simple interpretation of storm hydrograph, rainfall-runoff models
- How does storm discharge actually work?
 - If water is not transferred directly, how does addition of precipitation rapidly force release of pre-event water?
- Hypotheses
 - Pressure waves
 - Capillary fringe
 - Macropore flow

Baseflow transit time distributions

 Given measured input and output time series, optimize the function f(t) describing the distribution of transit times within a catchment

Baseflow transit time distributions

Frontiers: Managed Landscapes

- Relatively few studies have investigated transit times and runoff routing in large catchments and humandominated systems
- LOTS of great questions relating to land-use effects on runoff generation

Hydrograph separation - suburban

Pre-event water
 <33% of storm
 runoff

Urban system – Red Butte Creek

 Rapid and substantial addition of storm water in lower developed reach of catchment (UU campus)

Agricultural systems – artifical drainage

- Subsurface drain network increases agricultural land quality
- Fundamentally alters hydrological flow
- What is the impact on timing, magnitude of nutrient discharge from these lands?

Hoagland watershed

- Paired catchment study
- High and Low drainage density catchments
- Sampling for water quality, isotopes through Nov. storm
- Student participation (EAS591 Isotope Hydrology)

Storm hydrograph

 Different timing of discharge for the highand low-drainage catchments

Hydrograph separation

- Partitioned storm flow into event and pre-event water components using O isotopes, Mg²⁺
- Faster routing of storm water to stream in high-drainage catchment
- Change in storm water routing through event

Nutrient discharge

 Timing and magnitude of peak nitrate discharge different in the two catchments

Flush/bypass model

- Late season, drains largely inactive
- Drains divert storm water, slowing water table recharge
- Drains activation and discharge of high-N groundwater lags in high-drainage catchment
- Diversion of infiltration changes 'flashiness' of contaminant export

River water isotopes – continental scale

Kendall & Coplen, 2001

River water isotopes: rainfall-runoff model

 Can we reproduce isotope differences between surface water and precipitation using process models?

Bowen et al., 2011, JGR

Runoff model

Predicted river $\delta^2 H$ values superimposed on precipitation $\delta^2 H$ values

Runoff model residuals - why?

Data: Kendall and Coplen, 2001

Sensitivity testing ET patterns

Impact of accounting for different % loss of precipitation to ET by month

Bowen et al., 2011, JGR
Interrogating water source

- Evaporation
- Winter-biased runoff
- Imported water
- Provides basis for quantifying (and monitoring) seasonal or elevation bias of runoff generation
- Identifies non-local water sources

Managed waters

- Where does your water come from?
 - The faucet
 - 🕈 Yes, but...
- With spatial information isotopes can
 - Establish connectivity
 - Document what happens between the source and sink

US tap water isotope ratios

Range

- + 152‰ < δ²H < +11‰
- -19.4‰ < δ^{18} O < +4.2‰
- Cluster near the GMWL
- Average d-excess value of 5 not significantly different from 10

Bowen et al., 2007, WRR

Isotope ratios of US tap waters

Tap water vs. local precipitation

0 00

Tap water d values compared to precipitation

Catchment areas: source/sink connectivity

- Characterize source region for water supply
- Map supply footprint of source
- Water sinks 1000+ km removed from mean sources

Scaling Down: Urban Structure

- Many urban centers have decentralized water management
- Do importation rules scale down from states to cities?
- Inference: how are resources being managed, what are controls
- Prediction: neighborhoodscale predictive isoscapes?

Salt Lake City Tap Water Isotopes

Multiple Modes of Variation

Spatiotemporal Water Isotope Patterns

