Noticias Noticias

Los parásitos de la malaria aviar reducen la supervivencia de los mosquitos

Una alteración experimental de la carga de parásitos en las aves infectadas por malaria aviar afecta de manera notable a la supervivencia de los mosquitos que las pican; cuanto más alta es la carga de parásitos en las aves infectadas, menor es la tasa de supervivencia de los mosquitos que las pican. Estos resultados suponen una primera demostración experimental del impacto de los parásitos en la supervivencia de los mosquitos, utilizando para ello una alteración de la carga de parásitos en las aves de las que se alimentan. Además, por la similitud en su ciclo vital, los parásitos de la malaria aviar suponen un excelente modelo de estudio para identificar los factores que afectan a su transmisión por mosquitos, donde la supervivencia del insecto vector juega un importante papel. Para este estudio, se modificó la carga parasitaria de la malaria aviar del género Plasmodium en 36 ejemplares de gorrión común Passer domesticus con el fármaco antimalárico primaquina. El tratamiento redujo la carga de parásitos en las aves infectadas en comparación con las aves control, que fueron inyectadas con suero salino. Las aves fueron expuestas a la picadura de los mosquitos de la especie Culex pipiens, el principal transmisor o vector de los parásitos de la malaria aviar. La tasa de supervivencia de los mosquitos fue monitorizada durante los trece días posteriores a la picadura sobre las aves en periodos de doce horas. Transcurrido este tiempo, se obtuvo una muestra de saliva de los mosquitos para identificar la presencia de parásitos de la malaria aviar en dicha secreción. Tanto la saliva de los mosquitos como su cabeza y tórax, donde se encuentran las glándulas salivares del insecto en las que se acumulan los parásitos, fueron analizadas utilizando herramientas moleculares para detectar la presencia de los parásitos. Los análisis determinaron que había sido menor la supervivencia en aquellos mosquitos que habían picado a los ejemplares de aves con mayor carga de parásito. Estos resultados concuerdan con los encontrados en aves, donde la infección por parásitos también se asocia con un incremento en su mortalidad. Al igual que ocurre con las personas, las aves silvestres también se ven afectadas por la malaria, aunque los parásitos de la malaria que afectan a las aves son diferentes y no pueden ser transmitidos a los humanos. Si bien es cierto que los parásitos de la malaria aviar requieren de los mosquitos para ser transmitidos eficazmente entre un ave infectada y un nuevo hospedador, los resultados de este estudio indican que estos parásitos implican un coste sobre la supervivencia de los insectos. informacion[at]ebd.csic.es: Gutiérrez-López et al (2019) Experimental reduction of host Plasmodium infection load affects mosquito survival. Scientific Reports 9(1): 8782 https://doi.org/10.1038/s41598-019-45143-w


https://www.nature.com/articles/s41598-019-45143-w
Promedio (0 Votos)

Últimas noticias Últimas noticias

Atrás

Coevolución y la Red de la Vida

Coevolución y la Red de la Vida

La era de Internet nos ha demostrado el poder de las redes de información. Internet y sus usuarios forman redes, así como redes de transporte, aeropuertos y aviones, comunicaciones dentro y entre ciudades; y nuestro cuerpo depende para funcionar de redes de conexiones entre neuronas del cerebro, entre diferentes procesos metabólicos, etc. Los millones de especies de la Tierra también forman redes de interacciones, tal que ninguna de ellas puede sobrevivir sin relacionarse con otras: depredadores y presas, parásitos y hospedadores, plantas y micorrizas, mutualistas, relaciones de competencia, etc. Se trata de redes. Uno de los principales objetivos de los ecólogos y biólogos evolutivos es comprender cómo se forman las redes de especies, cómo cambian sus participantes a lo largo del tiempo y cómo afectan a la evolución. Cuando las especies interactúan entre sí, a menudo no sólo evolucionan, sino que coevolucionan. La selección natural favorece a los depredadores que son mejores en capturar presas, y favorece a las presas que tienen mejores defensas para escapar de los depredadores. Favorece a los individuos que compiten mejor contra otras especies. Y, entre las especies mutualistas, la selección natural favorece, por ejemplo, las plantas que mejor atraen a los insectos polinizadores y los insectos que visitan flores que son más eficientes para extraer su polen y néctar. Intentar catalogar y describir el patrón completo de conexiones en estas redes complejas es una tarea desalentadora. Aquí se ha intentado comprender cómo las especies coevolucionan dentro de grandes redes de especies mutualistas. Los autores comenzaron compilando 75 redes de especies interactuantes que ellos mismos y otros investigadores habían descrito anteriormente para una amplia gama de ambientes terrestres y marinos. Estas redes incluían, por ejemplo, plantas y polinizadores, plantas y aves y mamíferos que comían frutos y dispersaban semillas, anémonas y peces de anémona en arrecifes de coral, y plantas que son defendidas por hormigas. Cada red tiene, en un extremo, especies que interactúan con una sola especie y, en el otro extremo, especies que interactúan con muchas otras especies. Cuando se dibuja como una red, cada especie es un nodo y cada interacción entre especies es una línea entre dos nodos. Por lo tanto, cada línea es una interacción directa entre dos especies. Utilizando estas redes como punto de partida, los autores desarrollaron un modelo matemático que les permitió explorar por primera vez cómo la coevolución podría dar forma a los rasgos de las especies que forman parte de redes complejas de muchas especies que interactúan. El problema a resolver, sin embargo, no es cómo los rasgos de las especies se forman por coevolución directa entre parejas de especies. Más bien, el problema central es cómo la coevolución da forma a especies que interactúan directa e indirectamente con múltiples especies. Si dos especies interactúan y coevolucionan entre sí, entonces su coevolución, por otra parte, podría afectar indirectamente la evolución futura de otras especies dentro de la red. Los autores estudiaron los efectos relativos de la coevolución directa e indirecta sobre la evolución de rasgos dentro de redes de diferentes tipos de interacciones ecológicas. Sus análisis sugieren dos resultados contraintuitivos. Primero, cuanto mayor es la importancia de la selección coevolutiva entre las especies que interaccionan, mayor es la importancia de los efectos indirectos en la evolución general a través de la red. En segundo lugar, en los mutualismos que implican múltiples especies interactuantes, las especies más especializadas -las especies con menos interacciones directas- están más influidas por efectos indirectos que por sus interacciones directas. Estos dos resultados, junto a otros, tienen muchas implicaciones para nuestra comprensión de la evolución y coevolución en redes complejas de especies que interaccionan. Entre las más importantes, hay dos conclusiones que vinculan la evolución, la coevolución y la tasa de cambio ambiental. Con un cambio ambiental lento, los efectos indirectos de las especies en la evolución de otras especies pueden ayudar a las interacciones mutualistas a persistir durante largos períodos de tiempo. En contraste, un cambio ambiental rápido puede ralentizar la tasa global de evolución impulsada por las interacciones directas en estas grandes redes, haciendo a cada especie más vulnerable a la extinción. Con un cambio ambiental rápido las condiciones ambientales pueden cambiar más rápido que la adaptación de las especies a ese cambio en el seno de grandes redes mutualistas. El problema de los efectos directos e indirectos dentro de las redes no es, por supuesto, exclusivo de la biología. Cómo estudiar los efectos indirectos en las redes ha preocupado a los científicos en física, ingeniería, informática y en otras disciplinas. El marco de modelización desarrollado por los autores es aplicable a muchos tipos de redes. A partir de lo que pueden parecer como simples descripciones de quién-interacciona-con-quién, este estudio nos da una visión de cómo la evolución y coevolución pueden dar forma a la fascinante complejidad de la red de la vida. informacion[at]ebd.csic.es: Guimarães et al (2017) Indirect effects drive coevolution in mutualistic networks. Nature doi:10.1038/nature24273


http://www.nature.com/nature/journal/vaop/ncurrent/full/nature24273.html