Noticias Noticias

La estrategia que adopta la sabina mora para tolerar sequías difiere según el sitio

Los episodios de mortalidad de vegetación inducidos por eventos extremos de sequía en ecosistemas forestales están siendo ampliamente estudiados, pero no así en las formaciones arbustivas o matorrales. En este sentido suele asumirse que las plantas con estrés crónico son más vulnerables a la sequía desencadenando su muerte. En este trabajo se han analizado los eventos de mortalidad provocados por la sequía en matorrales mediterráneos dominados por la sabina mora Juniperus phoenicea en dos sitios con condiciones climáticas y de suelo contrastantes ubicadas en España. Se han caracterizado los patrones de crecimiento radial de sabinas vivas y muertas coexistentes, incluido el cálculo de estadísticas de crecimiento utilizadas como señales de alerta temprana, crecimiento en respuesta a las variaciones climáticas y se analizó la concentración de los isótopos de C y O en la madera. En la localidad de interior, sitio continental con sustratos rocosos (Yaso, Huesca), las sabinas muertas mostraron un crecimiento menor que los individuos vivos durante las tres décadas previas a su muerte en 2016. Sin embargo, en el sitio costero, templado y suelos arenosos (Reserva Biológica de Doñana, Huelva), las sabinas muertas eran en general de menor tamaño pero crecieron más que los individuos aún vivos durante las últimas dos décadas antes de su muerte en 2005. Los únicos patrones comunes entre ambos sitios fueron la mayor coherencia de crecimiento en las sabinas vivas y muertas antes de la muerte y la disminución en el crecimiento observado en los individuos finalmente muertos. Para toda la cronología, se encontró en ambos sitios que unas condiciones frescas y húmedas durante el invierno y primavera previos, junto con las menores temperatura en verano incrementaron los crecimientos de las sabinas. En Doñana, el crecimiento de las sabinas vivas se redujo más por las cálidas condiciones de julio que en el caso de los individuos muertos. Los valores más altos de ?13C en Yaso indican también un estrés por sequía más pronunciado. En Yaso, las sabinas muertas presentaron valores más bajos de ?18O, mientras que en Doñana ocurrió lo contrario, lo que sugiere diferentes cambios en la conductancia estomática antes de la muerte. Un verano muy cálido aumenta las tasas de evapotranspiración y desencadena la muerte en esta especie de raíces poco profundas, particularmente en sitios con poca capacidad de retención de agua. Se concluye que el crecimiento crónico lento no siempre es un predictor robusto de mortalidad provocada por sequía. informacion[at]ebd.csic.es: Camarero et al (2020) Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agr Forest Meteorol 291, 108078. DOI 10.1016/j.agrformet.2020.108078


https://www.sciencedirect.com/science/article/pii/S0168192320301805?dgcid=author#ack0001
Promedio (0 Votos)

Últimas noticias Últimas noticias

Atrás

Los desafíos de construir Variables Esenciales de la Biodiversidad

Los desafíos de construir Variables Esenciales de la Biodiversidad

En todo el mundo se están recopilando muchos datos sobre biodiversidad, pero sigue siendo difícil reunir los conocimientos dispersos para evaluar el estado y las tendencias de la diversidad biológica. Se introdujo el concepto de Variables Esenciales de la Biodiversidad (Essential Biodiversity Variables EBVs) con el objetivo de estructurar el seguimiento de la biodiversidad a nivel mundial, y de armonizar y estandarizar los datos de biodiversidad procedentes de fuentes dispares para identificar un conjunto mínimo de variables críticas requeridas en el estudio y gestión de cambios en biodiversidad. Desde un enfoque de "macrodatos" (Big Data), se han revisado los retos que supone construir productos globales de EBVs a través de los taxones y escalas espacio-temporales, centrándose en la distribución y abundancia de especies. La mayoría de los datos actualmente disponibles sobre la distribución de especies deriva de observaciones registradas en modo puntual o mediante muestreos realizados periódicamente, siguiendo protocolos estandarizados, generando datos de "presencia" o "presencia-ausencia". La mayoría de los datos de abundancia se generan haciendo censos poblacionales puntuales o generando series a largo plazo de una población concreta, usando protocolos estandarizados (por ejemplo, censos repetidos de la misma población en un lugar concreto o en múltiples puntos). La complejidad que existe para integrar estos conjuntos heterogéneos de datos procedentes de múltiples fuentes a través del espacio, el tiempo, los taxones y los diferentes métodos de muestreo, es enorme. Su integración en productos globales de EBV requiere corregir sesgos introducidos por la detección incompleta y variaciones en el esfuerzo de muestreo, tratar con diferentes resoluciones y extensiones espaciales, armonizar unidades de medida de diferentes fuentes de datos o métodos de muestreo, aplicar herramientas y modelos estadísticos para inter- y extrapolación espaciales, y cuantificar fuentes de incertidumbre y errores en datos y modelos. Para apoyar el desarrollo de EBVs para la Red de Observación de la Biodiversidad del Observatorio de la Tierra (GEO BON), se han identificado 11 pasos clave en el flujo de trabajo que harán operativo el proceso de construcción de productos de EBVs dentro y entre infraestructuras de investigación en todo el mundo. Estos pasos en el flujo de trabajo tienen en cuenta múltiples actividades secuenciales, incluyendo la identificación y agregación de varias fuentes de datos brutos sin procesar, el control de calidad de datos, la asignación de nombres taxonómicos y el modelado estadístico de datos integrados. Estos pasos se ilustran con ejemplos concretos de proyectos existentes de monitoreo científico y profesional, incluyendo eBird, la Red de Monitoreo y Evaluación de la Ecología Tropical, el Índice del Planeta Vivo y el seguimiento del zooplancton del Mar Báltico. Los pasos identificados en el flujo de trabajo son aplicables tanto a sistemas terrestres y acuáticos como a una amplia gama de escalas espaciales, temporales y taxonómicas. Dependen de metadatos claros, localizables y accesibles, y se proporciona una visión general de los estándares actuales de datos y metadatos. Varios desafíos para la construcción de productos de datos de EBVs globales aún no se han resuelto: (i) desarrollar herramientas y modelos para combinar conjuntos de datos heterogéneos y multi-fuente y colmar las lagunas de datos en coberturas geográfica, temporal y taxonómica; (ii) integrar nuevos métodos y tecnologías emergentes para la recopilación de datos, como los generados por ciencia ciudadana, redes de sensores, técnicas basadas en el ADN y teledetección por satélite; (iii) resolver problemas técnicos importantes relacionados con la estructura del producto de datos, el almacenamiento de datos, la ejecución de flujos de trabajo y el proceso o ciclo de producción, así como el acercamiento a la interoperabilidad técnica; (iv) permitir la interoperabilidad semántica desarrollando y adoptando estándares y herramientas para capturar datos y metadatos consistentes; y (v) garantizar la interoperabilidad legal fomentando los datos abiertos o datos que estén libres de restricciones en su uso, modificación e intercambio. Abordar estos desafíos es fundamental para la investigación sobre la biodiversidad y para evaluar el progreso hacia las metas fijadas por las estrategias de conservación y el cumplimiento de los objetivos de desarrollo sostenible. informacion[at]ebd.csic.es: Kissling et al (2017) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol Rev Doi 10.1111/brv.12359

 


http://onlinelibrary.wiley.com/doi/10.1111/brv.12359/abstract