1	Development of major histocompatibility (MH)-associated microsatellite markers and
2	characterization of linkage disequilibrium patterns in Atlantic salmon (Salmo salar) and
3	brown trout (Salmo trutta).
4	DASH, M ¹ , VASEMÄGI, A ^{1, 2}
5	¹ Division of Genetics and Physiology, Department of Biology, University of Turku, 20014
6	Turku, Finland
7	² Department of Aquaculture, Institute of Veterinary Medicine and Animal Science, Estonian
8	University of Life Sciences, 51014 Tartu, Estonia
9	Keywords: Major histocompatibility complex, microsatellite, linkage disequilibrium,
10	salmonid, Salmo salar, Salmo trutta,
11	
12	Corresponding author: Anti Vasemägi, Division of Genetics and Physiology, Department of
13	Biology, Vesilinnantie 5, University of Turku, 20014 Turku, Finland; Fax: +358 2 333 6680;
14	email: <u>antvas@utu.fi</u>
15	Running title: New MH microsatellites in salmon and trout
16	
17	
18	
19	
20	

21 Abstract

22	Genes of major histocompatibility complex play a major role in self recognition, immune
23	response and disease resistance in vertebrates. Here, we describe the development of 22 new
24	highly polymorphic microsatellite markers in both classical and nonclassical major
25	histocompatibility (MH) regions of Atlantic salmon (Salmo salar) and brown trout (Salmo
26	trutta). These newly developed microsatellite loci allow detailed characterization of the
27	diversity, differentiation, level of linkage disequilibrium and haplotype structure that enables
28	to further understand the relationships between MH variability and disease resistance in these
29	ecologically and commercially important species.
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	

40	Major histocompatibility gene complex (MHC) is a multigene family that plays a significant
41	role in self recognition, the initiation of immune response and disease resistance in
42	vertebrates. These genes are typically highly variable and are believed to be maintained by
43	balancing selection (Garrigan & Hedrick 2003). In particular, MHC class I and class II genes
44	encoding the receptor glycoproteins which present antigenic peptides to the T cells are
45	regarded as one of the most polymorphic genes described to date. In teleosts, MHC class I and
46	class II genes have evolved independently and therefore often referred as MH genes
47	(Grimholt et al. 2002). MH class I and class II genes in salmonids reside in different
48	chromosomes (Sato et al. 2000; Phillips et al. 2003). In Atlantic salmon, the classical MH
49	class IA region (Sasa UBA) is located in linkage group 15 (LG15) while classical MH class II
50	(Sasa DAA, Sasa DAB) genes reside in LG6 (Harstad et al. 2008). Atlantic salmon also
51	possesses several additional classical and nonclassical MH genes that in general show lower
52	levels of variability and are involved in a variety of specific immune functions (Lukacs et al,
53	2007, 2010; Harstad et al. 2008).
54	To date, most population genetic studies focusing on MH genes in salmonids have used
55	traditional sequencing of limited number of exonic regions in classical MHC class I and II
56	genes (e.g. Landry et al, 2001). However, screening of large number of individuals by Sanger
57	sequencing is both time consuming and expensive (but see also Pavey et al. 2011). As an
58	alternative strategy, several studies have demonstrated that screening microsatellite loci
59	tightly linked to MH genes can be used as a proxy for functionally important variation (e.g.
60	Grimholt et al. 2002; Vasemägi et al. 2005; Tonteri et al. 2010). Here, we describe the

61 development of 22 new polymorphic MH associated microsatellite markers located in

62 classical and nonclassical MH class I and class II regions in Atlantic salmon (*Salmo salar*)

63 and brown trout (*Salmo trutta*). To demonstrate the usefulness of the novel markers we

- 64 characterize linkage disequilibrium patterns in multiple Atlantic salmon and brown trout
- 65 populations.
- 66

67 Methods

68 *Microsatellite identification*

- 69 The least overlapping BAC clone sequences were chosen for the development of the
- 70 microsatellite markers that contained additional MH class I genes (UCA, UDA, SAA, UHA1,
- 71 UHA2, UGA) and nonclassical MHC IIα and IIB (Sasa DBA and Sasa DBB) genes in Atlantic
- salmon (Harstad et al. 2008; Lukacs et al. 2010). Altogether, nine BAC clones from LG15
- 73 [Genbank: EF427381, EF210363, GQ505858], LG3-1 [Genbank: GQ505859, GQ505860],
- 74 LG3-2 [Genbank: FJ969490], LG-10 [Genbank: FJ969488], LG-14 [Genbank: FJ969489] and
- 75 LG5 [Genbank, EU008541] were selected.
- 76 Primer design & sample information

77 A total of 48 primer pairs were designed from the selected sequences using MsatCommander 78 software (Faircloth, 2008). A M13-tail (CACGACGTTGTAAAACGAC) was added to the 5' 79 end of the forward primer. To enhance 3'adenylation a GTTT sequence was added to the 5' 80 end of each reverse primer (Browstein et al. 1996). The initial amplification success of the 81 microsatellite loci were tested in a set of sixteen individuals comprising eight Atlantic salmon and eight brown trout specimens from different populations (S. salar: River Teno, Finland; 82 River Selja, Estonia; River Varzuga, Russia; River Sella, Spain; Saint John River, Canada; S. 83 84 *trutta*: Lake Inari, Finland; River Danilovka, Russia; River Mustoja, Estonia). For 85 characterization of the variability and linkage disequilibrium (LD) patterns four Atlantic

86	salmon populations (landlocked population from River Kamennaja, Russia; anadromous
87	populations from River Ponoi, River Pulonga, White Sea, Russia; River Narva, Baltic Sea,
88	Estonia), and four brown trout populations (upstream and downstream of River Mustoja and
89	Pada, Estonia) were selected for genotyping (48 individuals per population). Total DNA was
90	extracted by salt extraction method (Aljanabi et al, 1997) and was diluted in 10Mm TE
91	buffer.
92	PCR optimization & population screening
93	Out of 48 loci, twenty two markers were successfully amplified (17 and 15 in Atlantic salmon
94	and brown trout, respectively; electrophoregrams available at
95	http://users.utu.fi/antvas/Electrophoregrams/Table1.htm). Twenty six loci were discarded from
96	subsequent analyses because of lack of amplification, multiple PCR products and lack of
97	polymorphism or peaks difficult to interpret (Table S1, Supplementary information). For
98	subsequent screening of different Atlantic salmon populations, the loci were divided
99	according to their size ranges into four multiplex and five single PCRs (Table S2, Supporting
100	information). Selected loci were amplified in 6.1 μ L total reaction volume that consisted of
101	20-50 ng of DNA, 0.6 μm of forward, 1.2 μm of reverse and 17 μm of M13 primer labeled
102	with one of the four fluorescence dye (FAM, VIC, PET or NED) and 1x QIAGEN multiplex
103	PCR mastermix. The PCR program consisted of initial activation step of 95°C for 15 min
104	followed by 36 cycles of denaturation in 94°C for 30 s (s), annealing temperature 58°C (14
105	cycles) followed by 52°C (25 cycles) for 1 min 30 s (s), extension reaction at 72°C for 1 min
106	and final extension at 72°C for 10 min (s). For brown trout, fifteen loci were divided
107	according to their size ranges into three multiplex and five single PCRs (Table S2,
108	Supplementary information) using the same PCR conditions and amplification profile as in
109	Atlantic salmon. A previously published microsatellite locus at 3'-UTR of Sasa-UBA

110	(classical MHCI region, Grimholt et al., 2002) was used for comparison of the LD patterns
111	along the linkage group 15. PCR products were pooled by adding 1.2 μ L from each multiplex
112	PCR product and 1 μ L from each single PCR product to 100 μ L of sterile water (Milli-Q). An
113	aliquot of 2 μ L of the pooled PCR product was added to 0.1 μ L of GeneScan 600LIZ size
114	standard (Applied Biosystems) and 9.95 μL of HiDi-formamide. The samples were
115	electrophoresed on an ABI PRISM 3130xl (Applied Biosystem) instrument. The results were
116	analyzed using GeneMarker V1.96 (Softgenetics). Population genetic analysis was carried
117	out using FSTAT 2.9.3.2 (Goudet 2005), Genepop 1.2 (Raymond & Rousset 1995) and Power
118	Marker 3.25 (Liu & Muse 2005) and Micro-Checker 2.2.3 (Van Oosterhout et al. 2004).

120 Results/Discussion

121 Atlantic salmon

122 The total number of alleles per locus and allelic richness in Atlantic salmon ranged from 3 to 123 32 and 2.15 to 16.32, respectively. The expected heterozygosity estimates in Atlantic salmon 124 ranged from 0.44 to 0.87 (Table 1). Altogether, 9 loci out of 17 significantly deviated 125 (P<0.05, before multiple correction) from the Hardy-Weinberg equilibrium expectations at 126 least in one population (Table 2). Pair-wise linkage disequilibrium analysis showed 127 significant linkage (P<0.05, before multiple correction) in 30 pair-wise comparisons out of 128 43 in LG15, 3 pair wise comparisons out of 6 in LG3, 2 pair wise comparisons out of 3 in 129 LG5. The extent of linkage disequilibrium measured as D' along the LG15 (Sasa-UBA 130 region) revealed considerable variation among Atlantic salmon populations (Figure 1a-d). As expected, landlocked Kammenaja population showed the highest levels of LD (Fig. 1a) while 131

the largest anadromous population (Ponoi) exhibited the lowest pair-wise *D*' estimates (Fig.1c).

134 Brown trout

135 The total number of alleles per locus and allelic richness in brown trout ranged from 2 to 19

and 1.95 to 11.28, respectively. The expected heterozygosity estimates ranged from 0.13 to

137 0.88 (Table 1). Significant deviations from HW equilibrium (P<0.05, before multiple

138 correction) were found in 9 out of 15 loci at least in one population (Table 2). Pair-wise

- linkage disequilibrium analysis showed significant linkage (P<0.05, before multiple
- 140 correction) in 20 pair wise comparisons out of 21 in LG15, 7 pair wise comparisons out of 10
- 141 in LG3. Similar to Atlantic salmon, considerable variation in LD at classical MH class I
- region were observed among different brown trout populations (Fig. 1e-h). Moreover, large
- differences in LD were observed within the same river system (Fig. 1g, h; River Pada
- 144 upstream vs. downstream).

145

To conclude, we developed a set of new highly polymorphic microsatellite markers linked to
classical and nonclassical MH regions in Atlantic salmon and brown trout that enable detailed
characterization of the diversity, differentiation and level of linkage disequilibrium. This, in
turn, helps to further understand the role of natural and artificial selection affecting different
MH loci in these ecologically and commercially important species.

151

152 Acknowledgements

- 153 The authors acknowledge project funding from the Finnish Academy of Science and Estonian
- 154 Science Foundation (Grant No. 6802, 8215). M. Dash was supported by the Biological
- 155 Interactions Graduate School (BIOINT) doctoral scholarship.

- 157 **References**
- 158 Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic
- 159 DNA for PCR-based techniques. *Nucleic Acids Research*, **25**, 4692-3.
- 160 Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide
- addition by Taq DNA polymerase: primer modifications that facilitate genotyping.
- 162 *BioTechniques*, **20**, 1004–1010.
- 163 Faircloth BC (2008) MsatCommander: detection of microsatellite repeat arrays and
- automated, locus-specific primer design. *Molecular Ecology Notes*, **8**, 92–94.
- 165 Garrigan D, Hedrick PW (2003) Detecting adaptive molecular polymorphism: Lessons from
- 166 the MHC. *Evolution*, **57**, 1707–1722.
- 167 Grimholt U, Drabløs F, Jørgensen SM, Høyheim B, Stet RJ (2002) The major
- 168 histocompatibility class I locus in Atlantic salmon (Salmo salar L.): polymorphism, linkage
- analysis and protein modelling. *Immunogenetics*, **54**, 570-81.
- 170 Goudet J (2005) FSTAT, a program to estimate and test gene diversities and fixation indices
- 171 (version 2.9.3.2). Available from URL: http://www2.unil.ch/popgen/softwares/fstat.htm

172 Harstad H, Luk	kacs MF, Bakke HG, Grim	holt U (2008) Multiple ex	pressed MHC class II loci
--------------------	-------------------------	---------------------------	---------------------------

in salmonids; details of one non-classical region in Atlantic salmon (Salmo salar). BMC

174 *Genomics*, **9**, 193.

- 175 Landry C, Bernatchez L (2001) Comparative analysis of population structure across
- 176 environments and geographical scales at major histocompatibility complex and microsatellite
- 177 loci in Atlantic salmon (Salmo salar). *Molecular Ecology*, **10**, 2525-39.
- 178 Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker
- analysis. *Bioinformatics*, **9**, 2128–2129.
- 180 Lukacs MF, Harstad H, Bakke HG, et al. (2010) Comprehensive analysis of MHC class I
- 181 genes from the U-, S-, and Z-lineages in Atlantic salmon. *BMC Genomics*, **11**,154.
- 182 Lukacs MF, Harstad H, Grimholt U, et al. (2007) Genomic organization of duplicated major
- 183 histocompatibility complex class I regions in Atlantic salmon (Salmo salar). *BMC Genomics*,
- **184 8**, 251.
- 185 Pavey S, Lamaze F, Garant D, Bernatchez L (2011) Full length MHC IIβ exon 2 primers for
- 186 salmonids: a new resource for next generation sequencing. *Conservation Genetics Resources*,
 187 3, 665-667.
- 188 Phillips RB, Zimmerman A, Noakes MA, et al. (2003) Physical and genetic mapping of the
- rainbow trout major histocompatibility regions: evidence for duplication of the class I region.
- 190 *Immunogenetics*, **55**, 561-569.
- Raymond M, Rousset F (1995) GenePop (version1.2): population genetics software for exact
 tests and ecumenicism. *Journal of Heredity*, 86, 248–249.

193	Sato A, Figueroa F, Murray BW, et al. (2000) Nonlinkage of major histocompatibility
194	complex class I and class II loci in bony fishes. Immunogenetics, 51, 108-16.
195	Tonteri A, Vasemägi A, Lumme J & Primmer CR (2010). Beyond MHC: signals of elevated
196	selection pressure in Atlantic salmon (Salmo salar) immune relevant loci. Molecular Ecology
197	7, 1273-1282.
198	Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley PF (2004) MICRO-CHECKER:
199	For identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes, 4,
200	535-538.
201	Vasemägi A, Gross R, Paaver T, Koljonen ML, Säisä M, Nilsson J (2005) Analysis of gene
202	associated tandem repeat markers in Atlantic salmon (Salmo salar L.) populations:
203	implications for restoration and conservation in the Baltic Sea. Conservation Genetics, 6, 385-
204	397.
205	
206	Figure 1. Linkage disequilibrium (LD) patterns among newly developed microsatellite loci in
207	LG15 measured as D' in four populations of Atlantic salmon: (a) Kammenaja (b) Narva (c)
208	Ponoi (d) Pulonga; and brown trout: (e) Mustoja upstream (f) Mustoja downstream (g) Pada
209	upstream (h) Pada downstream. The genes in LG15 are denoted as white boxes whereas the
210	locations of polymorphic microsatellite loci are marked as black bars. Box with cross mark
211	indicates monomorphic marker in the particular population (Kammenaja).

212	Table 1. Characteristics of 22 polymorphic MH-associated microsatellite loci in Salmo salar and Salmo trutta.
-----	---

Locus	BAC clone	ne Primer Positions*		Relative Location (distance from the MH gene)	Motif	Salmo salar			Salmo trutta				primer sequence 5'-3'				
	Genbank accession number	Start	End	(bp)		Size range (bp)	Но	He	Α	Ar	Size range (bp)	Но	He	Α	Ar	Forward	Reverse
LG15_1	EF427381	12,197	12,379	UBA (-)205351	(TG)18	212-236	0.67	0.78	11	6.86	201-213	0.57	0.79	9	7.19	TCTGTACCGTGTC AGGCATC	TACAGCCTGCTCC TCCAGTT
LG15_3	EF427381	53,090	53,493	UBA (-)164457	(GA)26	-	-	-	-	-	403-415	0.47	0.61	4	3.86	CCACTGTGAGATG CTGCTGT	CATTCTCTCCTCG GTTCTGC
LG15_7	EF427381	202,218	202,611	UBA (-) 15329	(AC)29(N)11 (CT)12	395-404	0.39	0.68	10	7.00	-	-	-	-	-	TATTGCGATTCGA TGTTCCA	GTGTCGGCCATCT TCTGATT
LG15_11	EF210363	227,845	228,313	UBA (+) 1029	(ATG)6	497-552	0.25	0.66	5	3.37	-	-	-	-	-	GGGACGGTAGAG AGAAGCAG	GCTGTTCGACTGA CACAGGA
LG15_13	EF210363	316,687	316,940	UBA (+) 99141	(AT)10T(AT)4	278-285	0.27	0.45	5	3.16	285-319	0.82	0.88	19	11.28	CAATGCAAACTAC CGCTCAA	TCACCATGATTCC GTTTCAA
LG15_14	EF210363	347,258	347,693	UBA (+) 129712	(CAGA)32	445-588	0.39	0.95	32	16.32	-	-	-	-	-	GCTCCGTTACACT GGGGTTA	TCCGCTCACAACA ACACATT
LG15_15	EF210363	379,513	379,762	UBA (+) 161967	(CT)22	284-302	0.43	0.49	5	3.66	-	-	-	-	-	GAAAAACAGAGA GCGGGACA	CCTCCAGTCTGAG CTGAACA
LG15_17	EF210363	412,879	413,056	UBA (+) 195333	(AT)15	196-238	0.72	0.87	17	10.35	-	-	-	-	-	TGACAACAAGGTG GGGTTTT	GGAAAACACAGG GGTTAGCA
LG15_18	EF210363	453,489	453,823	UBA (+) 235943	(GA)12	372-374	0.41	0.44	3	2.15	376-378	0.54	0.61	6	4.92	CGCAGCCACTTAT TCCATTT	CTGCTCTTGCATC CTTCTCC
LG15_20	GQ505858	492,458	492,912	UBA (+) 274912	(CTTT)16	462-568	0.43	0.91	22	13.24	427-432	0.55	0.51	4	2.41	CTAAGACTGTGCC CGTTTCC	GGAACGTGTTTTC GGTCAGT
LG15_24	GQ505858	630,405	630,853	UBA (+) 412859	(AG)3AA(AG)2G G(AG)2G(AG)3	-	-	-	-	-	480-486	0.14	0.13	2	1.95	GAAAACAGATGC ACCCACAA	CAAAGCTCCCTCT CACTGCT
LG3_1_4	GQ505859	11,334	11,463	UGA (+) 87434	(AC)14	163-173	0.53	0.64	4	3.84	169-190	0.82	0.83	10	7.73	CAATCTCAGAGGG CACTTCA	AGCCCATTCTTGG TCATTGT
LG3_1_6	GQ505860	85,173	85,514	UGA (+) 152273	(TAA)10	364-382	0.40	0.62	5	3.87	384-398	0.71	0.72	5	4.81	GGACCATCAGGTG AGGAAGA	CAAGACAGTGAG GCGACAAA
LG3_1_9	GQ505860	247,559	247,664	UGA(+) 314659	(TG)12	-	-	-	-	-	153-173	0.34	0.36	4	3.77	TGTGGTGGAGAAA CCATTCA	GATTCAGCACACA CCCCTTC
LG3_2_7	FJ969490	160,575	160,773	UCA (+) 10138	(CA)16	221-241	0.55	0.80	12	7.05	216-221	0.08	0.50	2	2	ATGACCACAAAG GCCAGAAC	AGTAGGAGACGC CAGCATGT
LG3_2_9	FJ969490	209,525	210,017	UCA (+) 1050334	(CTGT)13	515-531	0.48	0.57	11	5.57	506-518	0.78	0.71	5	4.48	GATGCACGCATAA TCCTGAA	AGCTGTGGGGAATG AAAATGG
LG10_2	FJ969488	20,335	20,630	SAA (-) 39935	(GA)24	-	-	-	-	-	303-307	0.54	0.57	3	2.96	CTTGGGGGAACTCT GGGTACA	TCATTTTGTGGGA AGTGTGC
LG10_6	FJ969488	50,571	50,672	SAA (+) 10932	(TG)12	-	-	-	-	-	136-184	0.70	0.65	13	7.70	GGGGTATAGAGGT GGGCAGT	GGGGACAGGAGA AGAGAGGT

LG14_1	FJ969489	24,889	25,138	UHA1 (-) 72423	(CATT)7	285-301	0.60	0.76	6	4.40	281-285	0.50	0.59	5	4.36	GCCAGGCTTGTCT ACAAAGG	GGTGGTGAAGCTG AAGGGTA
LG5_II_1	EU008541	7,997	8,531	DBA (-) 10379	(CA)18	557-582	0.62	0.85	17	9.45	-	-	-	-	-	GGAGGAAGGGGA GTGTGTTT	ACCTGCGTCATTC ATGTTCA
LG5_II_2	EU008541	25,102	25,640	DBA (-) 86688	(CGA)15	568-582	0.57	0.70	8	5.20	-	-	-	-	-	CGTTGTCATGTTG GAAGTGG	TCAGGATCGAGGG AAAAATG
LG5_II_6	EU008541	147,593	147,724	DBA (+) 35804	(AG)13AA(AG)7	156-234	0.54	0.71	8	5.14	140-148	0.31	0.33	6	3.14	GCATACCGGGGA AGTGACTA	CCACCAGCCTCCT CTGTTT

*Start of the forward primer and the reverse primer from the BAC sequence; Relative location: distance of the microsatellite from the MH

gene; *Ho*, observed heterozygosity; *He*, expected heterozygosity; *A*, total number of alleles; *Ar*, allelic richness; _, lack of amplification.

Table 2 Significance values from the I	Indy Wainhang avoat toat and	actimated multipliate function
Table 2. Significance values from the r	hardv weinderg exact test and	estimated null affele frequencies.

	Salm	o salar							Salmo	o trutta						
	Kam	ennaja	Narva		Ponoi		Pul	onga	Mustoj	a Upper	Mustoj	a Lower	Pada	Upper	Pada	Lower
Locus	P-	Null	P-	Null	P-	Null										
	value	allele freq.*	value	allele freq.*	value	allele freq.*										
LG15_1	ns	-	ns	-	ns		ns	-	0.0001	0.220	0.012	0.128	ns	-	0.0001	0.143
LG15_3	_		_		_		_		ns		0.003	0.219	ns		ns	
LG15_7	ns		0.0001	0.230	0.0001	0.153	0.001	0.195	_		_		_		_	
LG15_11	ns		0.047		0.0001	0.387	0.017		_		_		_		_	
LG15_13	ns		ns		0.032		0.01	0.176	0.044		ns		ns		0.036	
LG15_14	0.0001	0.306	0.0001	0.247	0.0001	0.377	0.0001	0.175	_		_		_		_	
LG15_15	ns		ns		ns		ns		_		_		_		_	
LG15_17	ns		ns		ns		ns		_		_		_		_	
LG15_18	na		ns		ns		0.041									
LG15_20	ns		0.0001	0.295	0.0001	0.295	0.003	0.086	ns		0.011		ns		ns	
LG15_24	_		_		_		_		ns		ns		ns		ns	
LG3_1_4	ns		ns		ns		ns		0.017		ns		ns		ns	
LG3_1_6	ns		ns		ns		ns		0.041		0.025		ns		ns	
LG3_1_9	_		_		_		_		ns		ns		ns		ns	
LG3_2_7	0.0001	0.138	ns		ns		ns		0.0001	0.341	0.023	0.352	0.026	0.198	0.0001	0.397
LG3_2_9	ns		ns		ns											
LG10_2	_		_		_		_		ns		0.0219		ns		ns	
LG10_6	_		_		_		_		ns		ns		ns		ns	
LG14_1	0.003		0.033		ns		ns		ns		ns		ns		ns	
LG5_II_1	ns		ns		0.0001	0.197	0.0001		_		_		-		_	
LG5_II_2	ns		0.022		0.017	0.160	ns		_		_		_		_	
LG5_II_6	ns		ns		ns											

217

218

ns, non significant p value; _, lack of amplification; m, monomorphic; *Null allele frequency estimation based on method of van Oosterhout et al. (2006).

	BAC clone	Primer Po	sition*	Relative Location (distance from the gene)		S. salar			S. trutta	Ita		Primer Sequence 5'-3'	
Locus	Genbank acc. No.	Start	End	(bp)	Motif	Quality	Size range (bp)	A	Quality	Size range (bp)	A	Forward	Reverse
LG15_5	EF42738	143469	143950	UBA (-) 74080	(CA)21	Unspecific	-	-	Unspecific	-	-	GGTTAGAGCGCAACTTACGG	GAATTTACGAACGCCCTGAG
LG15_10	EF210363	225716	226082	UBA(+) 8168	(GT)13	Unspecific	-	-	Unspecific	-	-	CAATGCCTGCAGAACACATC	GCATCGCTTATTGTTGCTGA
LG15_12	EF210363	238985	239170	UBA (+) 21436	(CA)6N3(CA)3TA(CA)2	Unspecific	_	-	Unspecific	_	_	CCTGGACAGCAAGACACAAA	GGGTGAGAGTGAGGAGTGGA
LG15_22	GQ505858	577303	577801	UBA (+)359753	(AT)21	Na	_	_	Na		_	AGCCAAGACAACGCAGAGAT	AGGCCTACAGTGCATTTGGA
LG3_1_1	GQ505859	19910	20229	UGA (-) 15006	(GA)5CA(GA)2GC(GA)3 GC (GA)7	Clear	354	1	Multiple	386-389	4	TGAAGCGAAATCACACAAGC	TTCTCTGCTCCTGCATCCTT
LG3_1_2	GQ505859	37403	37944	UGA (+) 2488	(AAC)7	Multiple	-	-	Too long	573-605	5	TCCTGCATTCCTACTGCTGA	TCCAGACCAACAGGGGTAAG
LG3_1_3	GQ505859	39067	39234	UGA (+) 14258	(CA)38	Unspecific	-	-	Unspecific	-	-	GACTCTAACCCCACACCCACT	GCAGCAGCGTGTGTAAAGAG
LG3_1_5	GQ505860	155459	155875	UGA (+)130648	(CA)34	Stutter	-	_	Unspecific	-	-	AATGCCAGCCGACTTCATAC	AAGCTGTTCTGGCTTGTGGT
LG3_1_7	GQ505860	243456	243552	UGA (+) 218643	(GA)11	Stutter	-	-	Stutter	-	-	CGAAGACCAACGAAACAACC	TCTGTTGGGGAGTTTTGTCC
LG3_1_8	GQ505860	268945	269163	UGA(+) 244130	(CA)22	Unspecific	-	-	Unspecific	-	-	TTTTCATTTATTGGTATTGGAACC	GTGCTACTGAGGCTTGCACA
LG3_2_1	FJ969490	10628	10962	UCA (-) 48566	(GAAA)2(GA)2(GAAA)2(GA)2(GAAA)2(GA)1(GA AA)1(GA)5	Multiple	-	-	Multiple	-	-	TAGGGCTCAGGTCTTCCAAA	TCAAGGCCATCAGACTGCTA
LG3_2_2	FJ969490	14682	15009	UCA (-) 44511	(AT)7A(AT)11GT(AT)6	Unspecific	_	-	Unspecific	-	-	TTTCGGTTACTAGGCCAACG	AACGAATGGTCGCCTAAATG
LG3_2_4	FJ969490	84416	84644	UCA (+) 25224	(GA)15	Multiple		_	Multiple		_	TTGTACCTGGGCGATACTTG	GAAACAGGGGGTGGACTACA
LG3_2_6	FJ969490	123541	123752	UCA (+)64348	(GT)17	Multiple	_	-	Multiple	-	_	TGGTTTGGAATGCTGCTACA	GCTCTGCAACCACATCTTCA
LG10_1	FJ969488	9372	9771	SAA (-) 50900	(GAGT)16	Unspecific	_	-	Unspecific	-	_	CCAGGAAATTGCTTTCACCT	GCTCTGGACAAAGGCATGAT
LG10_3	FJ969488	29188	29630	SAA (-) 31084	(TG)33	Unspecific	_	-	Unspecific	-	-	TGCATTCAACCCATTAACCA	GACCACCCGTCTATGTGTCC
LG10_4	FJ969488	52087	52201	SAA (-) 8184	(CA)11	Unspecific	_	-	Unspecific	-	-	TCTGGAGACACTGAGCATGG	CCCCATTCATTTTGATCCTG
LG10_8	FJ969488	112850	113030	SAA (+) 52580	(TA)10	Clear	220	1	Na	-	-	TCACAGCAAAAACTGGCAAA	CGCCTAAATGGAAAATGGAA
LG14_2	FJ969489	66875	67253	UHA1 (-) 30438	(CT)12	Clear	421	1	Stutter	538-674	-	AGCCAAGACAACGCAGAGAT	AGGCCTACAGTGCATTTGGA
LG14_4	FJ969489	10391	10557	UHA (+) 6604	(AT)5T(AT)11	Unspecific	_	-	Unspecific		-	ACGCTCCACATTTGTTTTCC	TTTCGAGGTTATTGCCCAAA
LG14_5	FJ969489	127530	127737	UHA1 (+) 30219	(TA)7(CA)6N5(TA)10	Unspecific	_	-	Unspecific	-	-	TGTGTGATTTTGTTGTCAGCAC	TTTTTGGTTGCAGCATGATT
LG14_7	FJ969489	151146	151586	UHA (+) 53835	(GT)29	Multiple	_	-	Multiple	-	-	AACAAAGGGCAGGAGACAGA	GGGCTGTGTGATGTTGTGAC
LG14_8	FJ969489	178029	178440	UHA (+) 80718	(TAA)8	Unspecific	_	-	Unspecific	-	-	CAGCCACTGCTACGACTTTG	GGGTACACCAGGGACACATC
LG5_II_3	EU008541	66984	67175	DBA (-) 44807	(CA)12	Unspecific	-	-	Unspecific	-	-	CTCAGGCACCAGTCCAGAAT	CCCATCATGTCAAGGGTCAT
LG5_II_4	EU008541	86589	87034	DBA (-) 25202	(CT)10	Clear	482	1	Clear	463	1	TTTCGCTCTATCACCAAGCA	TAGCACCTCAGGGGAAACAG
LG5_II_8	EU008541	191740	192269	DBA (+) 79950	(GT)10	Clear	561	1	Clear	561	1	TGTATGGCAGCAGGAAGATG	AAAGGCCGCACACCTTAATA

Table S1. Information on 24 microsatellite markers that did not result in successful amplification in Salmo salar and Salmo trutta.

*Start of the forward primer and the reverse primer from the BAC sequence; Relative location: distance of the microsatellite from the MH gene; A, total number of alleles; Multiple, amplification of multiple bands; Inconsistent, inconsistent amplification; Clear, amplification of single clear band; Stutter, amplification of multiple stuttering bands; Na, lack of amplification

Table S2. Information about the PCR and multiplexing.

Atlantic salmon

Single PCR

Primer conc. Is 10 pmol/ul Fluorescence conc. is 50 pmol/ul

SasaUBA				Single PCR	(LG3_1_6, LG15_4,	LG5_II_6, LG5_II_1)	
	Rea	action			Reaction		
	1X	ę	98X		1X ul	98X	
forw		0.20	19.60	forw	0.06		5.88
rev		0.20	19.60	rev	0.12		11.76
DNA		1.00	1.00	Fluorescence	0.05		4.70
QMP	2X		3.00	DNA	1.00		1.00
H2O		1.70	166.60	QMP	3.00		294.00
Total vol.		6.10		H2O	1.87		183.40
				Total vol.			6.10

Multiplex 1						Multiplex 2			
	R	Reaction					Reaction		
	1)	X S	98X			1X		ç	98X
	forw	0.06	5.88	1015 12	forw			0.06	5.88
LG15_1	rev	0.12	11.76	LGI5_13	rev			0.12	11.76
	forw	0.06	5.88		forw			0.06	5.88
LG15_15	rev	0.12	11.76	LGI5_/	rev			0.12	11.76
1 0 15 10	forw	0.06	5.88		forw			0.06	5.88
LG15_10	rev	0.12	11.76	LG15_20	rev			0.12	11.76
1015 11	forw	0.06	5.88		forw			0.06	5.88
LG15_11	rev	0.12	11.76	LG3_1_2	rev			0.12	11.76
	forw	0.06	5.88		Fluorescence.			0.34	33.32
LG5_II_Z	rev	0.12	11.76		QMP			3.00	294.00
	Fluorescer	0.34	33.32		DNA			1.00	1.00
	QMP	3.00	294.00		H2O			1.04	102.00
	DNA	1.00	1.00		Total vol.			6.10	
	H2O	0.86	84.28						
	Total vol.	6.10							

Multiplex 3						Multiplex 4			
	F	Reaction			Reaction				
	1	X 9	98X			1X		9	8X
	forw	0.06	5.88		forw		0	.06	5.88
LGIU_0	rev	0.12	11.76	LG14_1	rev		0	.12	11.76
	forw	0.06	5.88	1015 2	forw		0	.06	5.88
LG3_1_4	rev	0.12	11.76	LG15_3	rev		0	.12	11.76
	forw	0.06	5.88		forw		0	.06	5.88
$LG3_2_7$	rev	0.12	11.76	LG3_2_9	rev		0	.12	11.76
	Fluorescer	0.34	33.32		Fluorescence.		0	.34	33.32
	QMP	3.00	294.00		QMP		3	.00	294.00
	DNA	1.00	1.00		DNA		1	.00	1.00
	H2O	1.22	119.95		H2O		1	.22	119.95
	Total vol.	6.10			Total vol.		6	.10	

Brown trout

Primer conc. Is 10 pmol/ul Fluorescence conc. is 50 pmol/ul

Single PCR		Sas	aUBA		Single PCR	(LG15_12, LG15	_13, LG15_20	, LG3_1_6, LG3_2_7)	
	Reaction				Reaction				
	1X 98X			98X	1X ul 98X				
	forw		0.20	19.60	forw	0.	06	5.88	
	rev		0.20	19.60	rev	0.	12	11.76	
	DNA		1.00	1.00	Fluorescence	0.0	05	4.70	
	QMP	2X		3.00	DNA	1.0	00	1.00	
	H2O		1.70	166.60	QMP	3.	00	294.00	
	Total vol.		6.10		H2O	1.8	87	183.40	
					Total vol.			6.10	

Multiplex 1						
	Reaction					
		1X	98X			
LG10_6	forw	0.06	5.88			
	rev	0.12	11.76			
LG10_2	forw	0.06	5.88			
	rev	0.12	11.76			
LG15_18	forw	0.06	5.88			
	rev	0.12	11.76			
LG15_3	forw	0.06	5.88			
	rev	0.12	11.76			
LG3_2_9	forw	0.06	5.88			
	rev	0.12	11.76			
	Fluorescer	0.34	33.32			
	QMP	3.00	294.00			
	DNA	1.00	1.00			
	H2O	0.86	84.28			
	Total vol.	6.10				

Multiplex 2					
			Reaction		
		1X		9	8X
LG3_1_9	forw			0.06	5.88
	rev			0.12	11.76
LG15_1	forw			0.06	5.88
	rev			0.12	11.76
	Fluorescence			0.34	33.32
	QMP			3.00	294.00
	DNA			1.00	1.00
	H2O			1.40	137.20
	Total vol.			6.10	

Multiplex 3

	Reaction				
		1X	98X		
LG5_II_6	forw	0.06	5.88		
	rev	0.12	11.76		
	forw	0.06	5.88		
LG3_1_4	rev	0.12	11.76		
	forw	0.06	5.88		
LG14_1	rev	0.12	11.76		
1015 24	forw	0.06	5.88		
LG15_24	rev	0.12	11.76		
	Fluorescer	0.34	33.32		
	QMP	3.00	294.00		
	DNA	1.00	1.00		
	H2O	1.04	102.00		
	Total vol.	6.10			