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Abstract

Background: Since carotenoids have physiological functions necessary for maintaining health, individuals should be
selected to actively seek and develop a specific appetite for these compounds.

Methodology/Principal Findings: Great tits Parus major in a diet choice experiment, both in captivity and the field,
preferred carotenoid-enriched diets to control diets. The food items did not differ in any other aspects measured besides
carotenoid content.

Conclusions/Significance: Specific appetite for carotenoids is here demonstrated for the first time, placing these
compounds on a par with essential nutrients as sodium or calcium.
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Introduction

Mineral and nutrient appetite is defined as the motivation to

seek or choose specific mineral/nutrient-containing items [1]. An

specific appetite has been shown, in many different animal species,

for sodium [2], calcium [1] and even amino acids [3]. Such

‘‘nutritional wisdom’’ allows animals to regulate their diet choice

to satisfy their physiological needs [1]. Carotenoids are involved in

physiological processes fundamental for maintenance of health.

For example, they are precursors of vitamin A and they are

immuno-stimulants [4,5]. Since carotenoids cannot be synthesised

by animals and must be acquired from food, specific appetite for

carotenoids should be selectively favored. This should be even

more strongly selected in colorful carotenoid-based bird species, in

which additional allocation of these compounds for feather

pigmentation demands an even larger consumption of carotenoids.

Hence, colorful species should especially evolve a specific capacity

to seek out food with high levels of carotenoids. Whether this

ability exists remains largely unknown.

Here we show that great tits Parus major, a small passerine bird

with carotenoid-based plumage coloration [6], exhibited a

preference for carotenoid-enriched diet.

Results

In captivity choice tests great tits preferentially chose those

mealworms (larvae of Tenebrio molitor) that had been experimentally

enriched with carotenoids over control mealworms (Wilcoxon

signed rank test, T = 66.5, p,0.05) (Figure 1a), despite them not

differing in appearance or any other nutritional aspect than

carotenoid content (Table 1).

In field tests, great tits also significantly chose mealworms with

experimentally high levels of carotenoids over controls (Figure 1b)

(Wilcoxon matched-pairs test, T = 248, P,0.001). While there was

no significant difference from the null expectation for the first

mealworm chosen (56% choosing the high carotenoid treatment;

log-likelihood ratio test, G = 0.48, d.f. = 1, P = 0.85), this preference

subsequently increased to 88% for mealworms with high

carotenoid levels (G = 22.50, d.f. = 1, P,0.001). Thus, there was

evidence for an increase in preference over time from the first to

all later choices combined (G = 16.84, d.f. = 1, P,0.001). There

was no significant effect of sex or age of great tits on the proportion

of mealworms taken from the high carotenoid treatment (sex:

F = 2.55, d.f. = 1, 32, P = 0.12; age: F = 0.02, d.f. = 1, 32, P = 0.90).

Discussion

Certain animals have foraging preferences for specific colors

(e.g. red), that may be related to selection for carotenoid-rich food

[7–10]. In our experiments, the carotenoid-rich and -poor

mealworms did not differ with respect to color, size or nutritional

value (as reflected by protein and fat content), yet the birds showed

a strong preference for the carotenoid enriched prey type. This

preference was remarkable for the captive great tits, since

carotenoid concentration in the mealworms feeding on the

carotenoid-rich cornmeal was very low, compared to concentra-

tion in insects in the wild [11–13]. Any preference could in these

captive birds be enhanced because of the poor carotenoid supply

in their diet.

Although we do not have specific information on the underlying

mechanism for the carotenoid preference, the lack of differences in

appearance for mealworms used in the different treatments, makes
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us suggest that the preference may be based on olfaction or taste.

There are no known olfactory or gustatory receptors for

carotenoids in any animal. However, the volatile degradation

products of carotenoids could potentially be readily tasted and

smelled. However, we have to emphasize that although in the

captivity experiment there was room for a learning process or a

post-ingestive physiological feedback mechanism (e.g. hormone

interactions or health enhancement by ingested carotenoids that

makes birds ’feel good’), since birds were trained to feed from the

different mealworms previously to our experiment, great tits in the

field tests made their choice of carotenoid enriched mealworms

with no intervening training process. This strongly suggests a true

specific appetite for carotenoids.

In many different species, carotenoids are fundamental not only

for maintenance of health but also for signaling individual quality

[14]. Demonstration of specific appetite for carotenoids is highly

relevant to theories of visual signaling because it implies that

feeding individuals can preferentially detect and choose carotenoid

rich food. This novel finding is promising to further investigate

signal content.

Materials and Methods

Study species
The great tit is a small passerine bird broadly distributed in the

Paleartic [15]. The species has a conspicuous yellow breast and

belly; this yellow coloration mainly being caused by the presence

of lutein and zeaxanthin [6,12,13]. The estimated carotenoid body

content in the species is 92 mg [16].

Experimental approach with captive birds
Great tits (N = 27 males) were captured with funnel traps [17] in a

forested area in the vicinity of Barcelona, Spain, and transported to

nearby facilities of Museu de Ciències Naturals where experimental

trials took place. Birds were kept singly in 2 m3 cages with water ad-

libitum and a nest box for roosting for a period of 20 days before being

tested. Birds were trained for two weeks previously to the experiment,

to eat from two feeders; one, containing carotenoid-enriched

mealworms (larvae of Tenebrio molitor) and another containing control

mealworms. The two feeders were both always present. Mealworms

were fed with either corn (carotenoid-rich), or refined wheat flour

(control) that differ greatly in carotenoid content, corn flour having a

higher content of both lutein and zeaxanthin [18,19]. This was

verified by our own analyses (see below). Feeder position and content

was fixed within each cage/individual and varied randomly among

individuals. Experimental trials consisted of (simultaneously) offering

each individual one carotenoid-enriched and one control mealworm

in the corresponding feeders, and recording the feeder at which the tit

first foraged. Each individual was tested once per day for 10 days.

Figure 1. Food choice experiments. Results from the food choice
experiments in which great tits were given a choice between two
feeders, either containing mealworms with high or low carotenoid
content (see Table 1). Results are expressed as the median percentage
(695% confidence interval) of times that the test individual fed from
either control or carotenoid enriched mealworms. In the captivity
experiment (n = 27 individuals)(a), the carotenoid-enriched mealworms
were reared on corn flour, which has a very high content of both lutein
and zeaxanthin [18]. Control mealworms were fed with white common
wheat flour, which contains low quantities of carotenoids [19] (see also
table 1). In the captivity experiment, birds were offered one carotenoid-
enriched and one control mealworm, the experiment being repeated
for 10 times in different days. In the field experiment, with free ranging
wild birds (n = 34 individuals)(b), experimental mealworms were
injected with 10 ml of 1.8% lutein and 0.2% zeaxanthin (Kemin Foods,
FloraGlo 20% #80447), and control mealworms were injected with 1 ml
lutein and zeaxanthin and 9 ml sterile water. In that experiment,
individuals were tested only once, and had to choose from 5
experimental and 5 control mealworms.
doi:10.1371/journal.pone.0010716.g001

Table 1. Variation in composition and appearance of
mealworms.

Variable

Wheat
mealworms
Mean ± SE

Corn
mealworms
Mean ± SE F d.f. P

Carotenoid content (mg/g) 0.00460.018 0.07060.016 7.66 1,10 ,0.02

Body composition

Protein (mg/g –dry mass) 583.3964.90 575.99623.43 1.20 1,8 0.31

Fat (mg/g –dry mass) 387.2464.63 392.62622.99 0.41 1,8 0.54

Colour

Brightness (%) 46.2260.83 46.5760.83 0.09 1,18 0.77

Chroma (%) 21.7260.48 22.1060.48 0.31 1,18 0.58

Hue (u) 66.5860.99 66.9360.99 0.06 1,18 0.81

UV (%) 3.7560.49 3.3560.49 0.33 1,18 0.57

Size

Mass (g) 0.1460.01 0.1360.01 0.71 1,18 0.41

Length (mm) 27.060.44 26.560.44 0.65 1,18 0.43

Variation in composition and appearance of mealworms fed on wheat and corn
flour. The two kinds of mealworm differed significantly in carotenoid content,
but not in protein or fat composition, or appearance (MANOVA analysis).
doi:10.1371/journal.pone.0010716.t001
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Great tits were captured and maintained in captivity with a

special permission from the Catalan Government, Direcció

General del Medi Natural, Generalitat de Catalunya. Experiments

were conducted according to Catalan guidelines for the use of

animals in research. The cages used were large enough (see before)

to guarantee Great tit welfare. All the cages contained a nest box

for roosting and resting, and food and water were available ad

libitum. Since animals were housed individually, birds were not

subjected to any social stress. Since experimentation consisted only

of diet choice trials, and food provided consisted only of

mealworms, approval by a special committee was not necessary.

Experimental approach with free ranging birds
Great tits were captured in mist nets near commercial bird

feeders consisting of fat and seeds during December 2008–

February 2009 in Orsay, France, and they were subsequently

provided with color rings for identification. The food preference

test was also based on mealworms differing in carotenoid content.

Mealworms were kept on a diet of wheat flour with low carotenoid

content until use. Following capture of great tits, pairs of 5 cm

diameter cups for food with a distance between cups of 10 cm

were provided in the same sites as where mist nets were used, with

one randomly chosen cup holding either 1). five mealworms each

injected in the hemocoel with 10 ml of 1.8% lutein and 0.2%

zeaxanthin (Kemin Foods, FloraGlo 20% #80447), or 2). five

mealworms injected with 1 ml lutein and zeaxanthin (hereafter

carotenoids) and 9 ml sterile water. The concentrations of

carotenoids in mealworms were thus 1.43 and 0.14 mg/g,

respectively. The amounts injected were so small that they

remained inside the mealworms, and great care was taken to

ensure that the liquid was not visible on the outside. These two

treatments were chosen to assure that carotenoids were present in

both treatments, and that a potential preference would relate to

the amount of carotenoids rather than mere presence or absence

of carotenoids. A total of 10 ml carotenoids in one mealworm

amounted to 0.2% of estimated body content (92 mg) [16], or

8.4% of total stored carotenoids in the liver of a great tit

[concentration in liver was 3.80 mg/g for a liver weighing on

average 0.63 g, N = 11 great tits; A. P. Møller, J. Erritzøe and F.

Karadas unpublished information]. This treatment assured that

carotenoid-rich and control mealworms differed only in caroten-

oid content.

Using a pair of binoculars at a distance of 30 m APM recorded

for each individual great tit visiting the choice apparatus the

number and the order of mealworms taken from each of the two

cups during a period of 15 min, or until the bird had ingested all

(5) mealworms from one of the cups. A total of 34 great tits were

tested during these trials. Each individual was tested only once. All

birds ate from both feeders.

Analysis of mealworm coloration for the captivity
experiment

The coloration of the two types of mealworm was recorded

using a Minolta CM-2600d spectrophotometer, that measures

from 360 to 700 nm and provides values of brightness, chroma

and hue (LCH) using the standard software provided by the

instrument [20]. However, algorithms to calculate LCH variables

refer only to the 400–700 nm range (i.e. that visible to the human

eye) and omit the UV region that is visible to birds. For this

reason, and given that the maximum peak of absorbance of the

fourth cone of vision in the UV range in the closely related blue tit

(Cyanistes caeruleus) has l= 371 nm [21], we also included

reflectance at 370 nm to take UV reflectance into account. We

measured all spectra with reference to a white standard (WS-1,

Diffuse Reflectance Standard) (reflectivity over 98%) and

with reference to a dark spectrum to avoid external light

contamination.

We measured coloration on the dorsal area and flanks of the

mealworms used in the aviary experiment. Three measurements

were obtained from each mealworm on different random areas of

the body, and values were averaged. We ensured a good

measurement by using a mesh of 3 mm and by gently pressing

on the mealworms.

Analysis of carotenoid content of mealworms for the
captivity experiment

Both types of mealworms were ground up to obtain a

homogeneous mixture. For carotenoid extraction, one gram of

each sample was weighed in triplicate and placed into falcon tubes

containing 25 ml acetone. Suspensions were subsequently re-

ground in ultra-turrax and vacuum filtered. Extraction procedures

were repeated several times until filtrates were completely

colourless.

Extracts were then combined in decanting flasks and 25 ml

ethyl ether were added. We homogenized solutions and added

50 ml of a 10% aqueous NaCl solution. The colorless hypophases

were discarded and the epiphases repeatedly washed with the

NaCl solution. Epiphases were filtered through beds of anhydrous

sodium sulfate and placed in rotary-evaporator flasks. Solvents

were evaporated and pigment concentrates recovered from flasks

with small additions of HPLC grade acetone to a final volume of

10 ml. Aliquots of 0.5 ml from different pigment solutions were

filtered through syringe filters with 0.2 mm of pore diameter for

subsequent injection in an HPLC system.

The separation system used was described by Mı́nguez-

Mosquera and Hornero-Mendez [22], modified by Negro et al.

[23]. We used a reverse-phase column (Spherisorb ODS2) of

25 cm in length, 0.46 cm internal diameter, and with a particle

size of 5 mm. Separation was performed using an acetone-water

binary gradient with a flow of 1.5 ml min21. The volume of

sample injected was 20 ml, and detection was performed at

450 nm using a fixed-wave UV-visible detector.

Carotenoid pigments were identified by comparing their

retention time and spectral data under the elution conditions with

those obtained using pure standards [22,24–26]. Carotenoid

concentration was determined by comparing the area of each

peak in the chromatogram with areas of the calibration curve

obtained using pure standards. Quantification results are present-

ed as means of three independent injections.

Analysis of protein and fat content of mealworms for the
captivity experiment

One gram of mealworms (in 5 replicates) were placed in pre-

weighed extraction thimbles and dried for 48 h at 80uC. They

were cooled in an exsiccator and weighed on an analytical balance

after which the thimbles were placed in a Soxhlet-apparatus.

Neutral fat was extracted using a mixture of petroleum ether and

chloroform (95/5 v/v) overnight. The mass decrease after drying

at 40uC was taken as the amount of neutral fat. The remaining

mass can be taken to consist of protein and ash. Ash content was

determined by incinerating a subsample of the residue in a pre-

weighed crucible at 600uC for 24 h. The method is the standard

according to Blem [27].

Statistical analyses
In the diet choice preference experiments with captive birds, we

measured the percentage of times that test individuals had fed
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from the carotenoid enriched mealworm along 10 tests. This

percentage was used as a measure of preference (or avoidance).

We analysed the data with a Wilcoxon signed-rank test [28]. Our

null hypothesis was that 50% of the times tits should start feeding

from either of the two experimental mealworms, and a significant

deviation from 50% indicated a significant preference.

In the diet choice preference experiments with free ranging wild

birds, we compared for each individual (matched-pairs test) the

number of carotenoid-enriched and control mealworms that it had

ingested. For the analysis of a preference for the first mealworm

chosen and for the subsequent selections, we used the log-

likelihood ratio test, with a null hypothesis of 50% ingestion of

carotenoid enriched mealworms.
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26. Minguez-Mosquera MI, Pérez-Gálvez A (2002) Carotenoid and Provitamin A in

Functional Foods. In: Hurst WJ, ed. Methods of analysis for functional Foods

and Nutraceuticals. Boca Raton: CRC Press.

27. Blem CR (1976) Patterns of lipid storage and utilization in birds. Amer Zool 16:

671–684.

28. Neave HR, Worthington PL (1992) Distribution-free tests. London: Routledge.

423 p.

Appetite for Carotenoids

PLoS ONE | www.plosone.org 4 May 2010 | Volume 5 | Issue 5 | e10716


