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Summary  15 

Individual-based or agent-based models are a type of stochastic simulation models 16 
in which explicit agents or individuals interact with each other and the environment 17 
to generate system dynamics. The use of these models is linked to questions dealing 18 
with complex systems and is more akin to a research program than a method in 19 
itself, burrowing techniques from many different disciplines. First, the general aim 20 
and the questions to be addressed with the model, including the a priori 21 
expectations, must be explicit. The second step includes building the conceptual 22 
model based on the aim and the empirical and theoretical knowledge available. The 23 
conceptual model is then implemented in a core model which should be able to 24 
perform a single simulation run. The core model includes the definition of 25 
individuals and their traits, the functional relationships, the environment and its 26 
properties, the temporal and spatial domains, resolutions and boundary conditions 27 
and model scheduling. A single model run should produce an output that allows for 28 
an early evaluation of model consistency and that can be analyzed later on. At this 29 
stage, the conceptual model and the core model should be carefully documented. 30 
Finally, analyzing the model may require several steps, including model debugging 31 
at run time and an evaluation of the consistency of model behavior at the relevant 32 
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parameterizations and at extreme values; the evaluation of structural uncertainty 33 
and sensitivity analyses, including uncertainty analyses; the use of model selection 34 
techniques, if there are alternative model specifications; model validation and 35 
calibration, which consists of estimating model parameters by systematically 36 
comparing empirical and simulated data. Ultimately, the successful use of these 37 
models is highly dependent on having a clear aim and a good conceptual model. 38 
Given the complexity of the questions these models can address and the large 39 
flexibility that is allowed in analyzing them, this chapter is just a brief introduction 40 
to their construction and use.  41 

 42 

11.1  Individual and agent-based models 43 

Individual-based models (IBMs) belong to a broad class of stochastic simulation 44 
models in which the individuals (or more generally agents) of a population are 45 
explicit and identifiable, interacting under a set of rules within a given environment 46 
(DeAngelis and Mooij, 2005; Grimm and Railsback, 2005). Each individual is 47 
characterized by specific properties and state variables such as sex, age, 48 
reproductive status, body condition, the coordinates defining its spatial location or 49 
its genetic make-up. IBMs may range from very simple to extremely complex 50 
implementations. Nevertheless, the conceptual simplicity is one of the reasons why 51 
IBMs are becoming so pervasive in disciplines dealing with complex systems, such 52 
as astrophysics, cell biology, the social sciences or ecology (Gilbert, 2008; Grimm et 53 
al., 2005). Complex systems are characterized by emergent properties generated by 54 
the interaction among its components and the environment. Typically, the behavior 55 
of those emergent properties is affected by stabilizing negative feedbacks and/or 56 
destabilizing positive feedbacks, as occurs with density dependent processes or 57 
with Allee effects. Conceptually, it is easy to grasp what IBMs are, as it is to build 58 
them if we have an intermediate command of a programming language. The difficult 59 
part is using these models in a way that is useful for our purposes and then 60 
communicating the methods and results to third parties in a clear and logical way. 61 
In this chapter I will try to help you in doing so.  62 

Populations are just collections of different individuals. The uniqueness of 63 
individuals affects their realized fitness thus contributing in different amounts to 64 
the dynamics of the population to which they belong. Fortunately, the heterogeneity 65 
of individuals can be categorized into several main types that summarize the most 66 
relevant sources of heterogeneity in fitness, such us demographic classes, 67 
phenotypes or genotypes. In population ecology, we can take advantage of this 68 
structuring by averaging reproduction, survival and movement parameters within 69 
each of these groups and then describe or project population dynamics using those 70 
estimates. Nevertheless, class-specific demographic parameters vary through time 71 
and for individuals in different spatial locations, normally as a consequence of 72 
changes in relevant environmental variables.  73 

Populations belong to the most challenging type of complex systems: adaptive 74 
systems, i.e. the responses of individuals can change (Grimm and Railsback, 2006). 75 
Apart from evolutionary responses, which may occur within a small number of 76 
generations making them relevant for population dynamics (DeAngelis and Mooij, 77 



3 
 

2005), individuals can show behavioral and other phenotypic responses (including 78 
memory, maternal effects or the effect of previous conditions within the domain of 79 
each individual), having the capacity to adapt their responses to environmental 80 
conditions in unexpected ways, making demographic functional responses very 81 
dynamic (Kuparinen and Merila, 2007; Doak and Morris, 2010). Methods dealing 82 
with complexity are especially useful for questions dealing with real populations. 83 
Nowadays, the major challenge of population ecology lies in having some forecasting 84 
capacity for populations composed of heterogeneous and adaptive individuals living 85 
in an environment which is also heterogeneous and dynamic in time and space.   86 

 87 

11.1.1 What an individual-based model is and what it is not 88 

The typical implementation of an IBM comes in the form of a computer program that 89 
executes, in a dynamic way, the processes describing the interactions among a set of 90 
individuals and their environment, generating relevant emergent properties at the 91 
population level, such as trajectories of population size in time, age, stage or sex 92 
distributions or distributions of density in space. Therefore, IBMs are simply a way 93 
to generate simulated data using stochastic numerical simulations. In itself it is not 94 
a method of analysis based on some statistical paradigm and therefore it departs 95 
from most of the methods described thus far in this book. To be of any use, the 96 
simulated data needs to be summarized by analyzing it in a similar fashion to that of 97 
field data, using everything we have learned so far, from how to generate and test 98 
sensible hypotheses, to estimating demographic parameters or analyzing time 99 
series and spatial structure. Therefore, the use of IBMs requires some a priori skills 100 
and an advanced research plan, including an adequate initial design for a clearly 101 
stated question, testing the general behavior of the model against empirical data 102 
and/or theoretical expectations and finally conducting some simulation 103 
experiments in which we systematically evaluate alternative scenarios in order to 104 
make some useful predictions.  105 

Building an IBM requires software coding, either implicitly or explicitly. 106 
Nevertheless, coding is by no means the limiting factor when building an IBM. The 107 
main challenge is making explicit the question and designing a sensible and logical 108 
procedure to address it. Above all, using IBMs is an excellent way to make explicit 109 
our knowledge and assumptions in order to generate new hypotheses and 110 
predictions. It is therefore clear that IBMs are most relevant when aiming at complex 111 
questions for which other approaches are limited. To be able to do so we need a 112 
priori knowledge about how the system might work as well as information to be able 113 
to parameterize the model, even if using scenarios with hypothetical 114 
parameterizations (DeAngelis and Mooij, 2005; Grimm and Railsback, 2005).  115 

 116 

11.1.2 When to use an individual-based model  117 

The use of IBMs has increased significantly in the last few decades, and so has the 118 
diversity of research questions covered (Grimm, 1999). Models are often used to 119 
investigate complex questions, such as those having highly discordant spatio-120 
temporal scales for different processes and patterns (generally local interactions 121 
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generating data patterns at large scales), feedbacks and conditional parameter 122 
values affecting functional responses or strong impacts of spatial environmental 123 
heterogeneity on individual traits and responses. In many cases, the use of IBMs 124 
links population ecology to other disciplines, such as genetics, landscape ecology, 125 
behavioral ecology, ecotoxicology and economics. Typical studies range from 126 
population viability analysis of small populations for which demographic 127 
stochasticity is important, to management questions including the evaluation of 128 
different harvest regimes (Wiegand et al., 1998, Whitman et al., 2004), and 129 
questions dealing with population genetics, such as genetic structure or effective 130 
population size, and their relationship with demography and population viability 131 
(Storz et al., 2002; Bruggeman et al., 2010, Perez-Figueroa et al., 2012). Authors 132 
often explore the role that different mechanisms can play at the population level 133 
under different environmental conditions, including physiological processes, such 134 
as individual energetics, growth and biomass dynamics or their interaction with 135 
diseases (Boyles and Willis, 2010; Buckley, 2008; Willis, 2007), as well as behavioral 136 
mechanisms, such as the link between individual behavioral responses and their 137 
impact on demographic parameters, the role of group living and sociality or spatial 138 
ecology and individual movements, including dispersal and how it impacts 139 
population dynamics (Goss-Custard et al., 2006; Kramer-Schadt et al., 2004; Rands 140 
et al., 2006; Revilla et al., 2004; Revilla and Wiegand, 2008; Stephens et al., 2002; 141 
Tablado and Revilla, 2012). Finally, the use of IBMs in complex multi-specific 142 
questions, such as predation and community or disease dynamics is also relevant 143 
(Carlo and Morales, 2008; Ramsey and Efford, 2010; Rushton et al., 2000; Schmitz, 144 
2000; Wilkinson et al., 2004). 145 

 146 

11.1.3  Criticisms on the use of IBMs: Advantages or disadvantages  147 

When first used, IBMs were heavily criticized along four main lines of thought. First, 148 
these models were described as too complex and therefore very data-hungry and 149 
prone to overfitting and error propagation problems. This critique has been based 150 
on a simplifying generalization and on some erroneous analyses (Beissinger and 151 
Westphal, 1998; Mooij and DeAngelis, 1999). If properly designed, calibrated and 152 
analyzed, IBMs are no more prone to those problems than any other applicable 153 
method (see Wiegand et al., 2004b and the discussion and references therein). The 154 
generalization on over complexity is quite unfair since it is by definition not part of 155 
IBMs, but rather a consequence of addressing complex questions. Additionally, it 156 
confuses the definition of complexity used for statistical inference in statistics 157 
probability theory, defined by the number of parameters of a statistical model, with 158 
structural complexity under algorithmic theory. This leads to an axiomatic 159 
application of Occam’s razor, which should be applied to empirically or theoretically 160 
supported process descriptions and when those descriptions are similarly 161 
supported by data. Only then should the model with fewer parameters be favored. 162 
The usefulness of a model is not given by the number of parameters, but rather its 163 
ability to address a question. 164 

It is often assumed that the lower the number of parameters of a model the more 165 
generalizable the results, forgetting that the assumptions are also part of the model, 166 
and that to be able to make generalizations to other systems (not to say to make 167 
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predictions) the set of assumptions must be sensible and comparable among 168 
systems. Structural realism is an important advantage of IBMs, especially in relation 169 
to model assumptions and even if model parameterization is not fully resolved or 170 
specified (Wiegand et al., 2004b; Ajelli et al., 2010). For example, the structural 171 
complexity of IBMs allows for the direct inclusion of demographic stochasticity with 172 
no need to parameterize it.  173 

The remaining three criticisms are that IBMs are difficult to analyze, difficult to 174 
communicate, and, finally, the results are difficult to generalize in order to make 175 
inferences on the functioning of other systems (e.g., Bolker et al., 2003). These points 176 
are relevant and represent the main challenge of using IBMs. The poor 177 
implementation of some early models, for some of which it appears as if the aim was 178 
to build the model itself, plus a poor documentation made the models too obscure 179 
and difficult to follow, not to mention replicate (Müller et al., 2014). The only way to 180 
minimize those problems consists in using a research program aiming to 181 
understand how a complex system works (individual-based ecology  sensu Grimm 182 
and Railsback, 2005). In doing so we should take advantage of the flexibility of IBMs, 183 
including the possibility of linking them to other methods, the capacity to make use 184 
of many sources of data with varying quality, including ancillary data, or the capacity 185 
to introduce difficult structures, such as covariation between model parameters, in 186 
a natural way. Finally, an important advantage of using IBMs is that if properly built, 187 
they force us to make explicit all the relevant knowledge on a population, including 188 
how different processes interact, and the capacity to generate predictions that are 189 
testable in the field.  190 

 191 

11.2  Building the core model 192 

11.2.1 Design phase: The question and the conceptual model 193 

The first step in building an IBM is to identify and make explicit the general aim of 194 
the model. In the early days of IBMs it was not uncommon to find examples of models 195 
that were described with no further aim, consequently generating a lot of criticism. 196 
IBMs, as any other model, should be built to address a specific question. The general 197 
aim should be developed in the form of specific questions that can be directly linked 198 
to a priori predictions as well as data, both empirical and simulated. The theoretical 199 
and empirical context must be set, together with the general simplifying 200 
assumptions that are made a priori, such as no role for space or evolutionary 201 
processes.  202 

The second step in the design phase consists in developing a conceptual model in 203 
which we summarize the knowledge in relation to the question to be addressed. At 204 
this stage it is quite useful to perform an in-depth review of the state of the art of the 205 
question, which should be made available to readers, either as part of the final 206 
manuscript or as a stand-alone publication. The conceptual model should make 207 
explicit the processes at the level of individuals that are known to affect some of 208 
their fitness traits (e.g. age mediated survival), the environmental factors 209 
modulating them (e.g. higher mortality at low temperatures) and the available 210 
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parameter estimates including their central value, variability and uncertainty. It is 211 
also important, especially if we are dealing with a question related to a specific 212 
species and population, that we clearly differentiate the information coming from 1) 213 
general theory (including empirically derived heuristic patterns), 2) from species 214 
with a similar life-history and ecology, 3) from the same species in other populations 215 
and 4) from the focal population itself. This distinction will help us later on when 216 
defining model uncertainty, parameterizations and the alternative scenarios.  217 

From the design phase we should have a shopping list with the working plan and 218 
the required pieces, including: 1) the individual traits (both those directly and 219 
indirectly linked with fitness); 2) processes and their parameters directly modifying 220 
individual traits (including rules and equations); 3) environmental processes and 221 
their parameters (indirectly affecting individual traits, their rules and equations); 4) 222 
a well-planned scheduling, i.e., how all those processes occur and integrate along the 223 
iterations of the model, that is, along the individuals in the population or through 224 
time; and, finally, 5) the emergent properties directly linked to the questions at hand 225 
(Fig. 11.1).  226 

The design phase is critical and our final success will depend on doing a good job at 227 
this stage (Fig 11.1). It is also the most difficult part of the entire process, requiring 228 
some experience to master. The good news is that there is no single correct way to 229 
do it, and that we have a lot of freedom to follow our own preferences and style. 230 
Inexperienced researchers should consult relevant papers using IBMs (see section 231 
11.1.2) and see how different authors deal with stating and breaking the general aim 232 
into questions and predictions and how they explain and justify their conceptual 233 
model. Building an IBM is about creating an explicit and dynamic representation of 234 
the available knowledge (conceptual model) on the relevant processes and their 235 
parameters affecting some variables of interest (emergent properties linked to the 236 
questions and predictions). We will have a chance to eventually be successful only if 237 
we have a clear question and a good conceptual model.  238 

11.2.2 Implementation of the core model  239 

The next step is the implementation of the conceptual model in a core model that by 240 
iteration of the processes generates some type of dynamics in a single simulation 241 
run. Normally, the core model is implemented using a programming language. The 242 
best language is the one you already know (or the one mastered by someone who 243 
can provide some support). There are so many potential choices that here we can 244 
only offer a brief field-guide to help you in deciding (Box 11.1), and make general 245 
recommendations that are useful across platforms and languages. There is no single 246 
best approach since different systems and languages have both advantages and 247 
disadvantages. Running simulations will require a modeling environment that 248 
allows for an efficient characterization of individuals and the proper integration 249 
across scales. Additionally, it is convenient that the system allows for debugging 250 
while coding and while running simulations, which will help in detecting errors and 251 
in the evaluation of model consistency (Fig. 11.1). Finally, the selected system 252 
should allow for fast simulation runs in order to be time-efficient in the analyses 253 
(Box 11.1).  254 

11.2.3 Individuals and their traits  255 
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The population is a collection of individuals, but before creating any individual, we 256 
have to define their attributes, i.e., describe the traits and properties characterizing 257 
them, as defined in our conceptual model. For example, if we need to distinguish 258 
their sex, age and reproductive status, we will need to define those three identifiers. 259 
Even if two individuals have the same values for all traits, they must be unique and 260 
it should be possible to distinguish and find them within the population. Individual 261 
traits can be constant throughout their lifetime, for example their genetic makeup, 262 
or –depending on the taxa– their sex; or dynamic, if they change during the life of 263 
the individual, such as age or reproductive status (Box 11.2). The questions to be 264 
addressed with the model will help us in defining the initial population, which needs 265 
to be created from scratch at the beginning of a simulation. This population will have 266 
a given number of individuals, each with its own traits. As such, we create a 267 
population with a specific distribution of, for example, sexes, ages and statuses. 268 
Obviously the initial condition imposed by this population will have a profound 269 
impact on model dynamics: the dynamics generated by an initial population of 10 or 270 
500 individuals will be quite different. Therefore the design and justification of the 271 
initial conditions should be thought out carefully and its impact analyzed.  272 

11.2.4 Functional relationships  273 

Individuals should interact in such a way that their fitness traits are affected. In 274 
classical population ecology we broadly distinguish between processes dealing with 275 
survival, reproduction and movement. Conceptualizing survival and reproduction 276 
as processes removing or adding individuals from the population is straightforward 277 
(Box 11.3). Movement is more complicated as it is a process mediating the addition 278 
or removal of individuals by migration. We can distinguish three types of processes 279 
directly affecting individuals: 1) those adding or 2) removing individuals and 3) 280 
those modifying individual traits, including responses to environmental conditions, 281 
behavioral responses and automatic modifiers of traits, such as aging (changing the 282 
age through time). They may range from very simple rules, for example if the 283 
maximum age is reached the individual must die deterministically, to complex sets 284 
of conditional equations such as a function calculating the probability of breeding as 285 
a function of local density and a set of environmental variables only if age and body 286 
condition allow for it. The possibilities are incredibly broad, but fortunately, we have 287 
a conceptual model at hand to identify what processes are potentially relevant.  288 

Implementing functional relationships is normally done by programming 289 
subroutines, which is nothing more than a packed sequence of instructions that is 290 
executed whenever we call for it. Subroutines take different names in different 291 
languages (e.g., functions, procedures, methods) but they work in a similar way. 292 
Functional relationships are implemented by modifying variables (Box 11.4) with 293 
mathematical, logical and other types of operators as well as functions (for example, 294 
to obtain the absolute value of a floating number or to truncate it). In the case of 295 
complex equations we can make use of pre-coded libraries (which are subroutines 296 
in themselves) that can simplify the task. A key characteristic of subroutines in IBMs 297 
is that many of them need to go through the population, individual by individual, in 298 
order to perform the required calculations. For example, in order to apply an annual 299 
mortality rate we need to go through all individuals, one by one, and stochastically 300 
check if they can survive to the following year (Box 11.3). 301 



8 
 

 302 

11.2.5 The environment and its relevant properties  303 

The environment represents the set of variables that act as direct or indirect 304 
modifiers of the traits of individuals. For example, if the probability of reproduction 305 
of a female depends on its age, the actual density and the amount of rain in that year 306 
with some specific parameters estimated with field data. Age is an individual 307 
property with its own dynamics whereas density and rain are external variables (for 308 
the focal individual). In this case, we need to calculate and keep track of population 309 
size and then calculate density during each simulation (Box 11.4). Note here that 310 
density dependence is probably one of the simplest impacts that the environment 311 
may have on the traits of each focal individual. The same applies for rain, which, 312 
depending on our needs, may be a predefined set of values (for example, a constant 313 
included in a one dimensional array of integer values, indexed from the first to the 314 
last year of data) or have its own dynamics depending on additional functions. Fixed 315 
environmental properties are included in the model as variables (with or without 316 
associated variability; Box 11.4); whereas in the case of dynamic environmental 317 
properties we need to include the processes describing the dynamics (rules, 318 
functional relationships and their parameters) in specific subroutines as we do with 319 
other processes. Environmental properties, which are also part of the initial 320 
condition, will have to be set up when starting the simulation.  321 

11.2.6 Time and space: domains, resolutions, boundary conditions and scheduling 322 

A critical element is how time and space are dealt with. Both are defined in all 323 
conceptual models, either implicitly or explicitly. In explicit definitions we need to 324 
keep track of them, either in continuous or discrete ways. If time and/or space are 325 
not explicit we still need to acknowledge them by clarifying the assumptions made 326 
on their reference domains. A domain is just the range of allowed values. Even in 327 
non-spatial models we have a spatial domain in the form of an assumption. 328 
Therefore, the first step is defining the temporal and spatial domains. Time is 329 
explicit in most cases (but not all), whereas both spatially implicit and explicit IBMs 330 
are common. For example, if we define the temporal domain of our model as 10 331 
years (e.g. for a short-term reintroduction evaluation), we know that a simulation 332 
can run at most for that amount of time; or, if the spatial domain is 100 x 500 km 333 
that is the area in which our population occurs.  334 

Within its domain, time can be represented by one or more temporal resolutions as 335 
required by the processes affecting individuals and the environment. The study of 336 
the interaction between processes at highly discordant temporal resolutions is 337 
essential for understanding the dynamics of complex systems (Grimm et al., 2005). 338 
In the above example the 10 years can run in steps of one day or one year depending 339 
on the relevant processes. For example, in the case of univoltine species, 340 
reproduction can occur only once a year and therefore reproduction would require 341 
steps of one year. On the other hand, if we need to evaluate the role of the mortality 342 
imposed by short-term cold spells, we may think of a finer temporal resolution. Time 343 
is normally introduced as a conditional loop in which there is a counter that keeps 344 
track of the current time step (see subroutine for population dynamics in Box 11.3). 345 
If we have several temporal resolutions we can nest several conditional loops in a 346 
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way that allows accounting for time as a clock does. For example, if we need days for 347 
survival and years for reproduction, we will code two nested loops, one counting 348 
years and another, within the previous one, counting days. Once the day loop runs 349 
for 365 days we start it again and the yearly loop moves to the next year.  350 

In spatially explicit models we can proceed from simple to very complex 351 
descriptions of space (Box 11.5). Typically, we need explicit space when movement 352 
is a relevant process and therefore it needs to be implemented in subroutines, with 353 
rules and/or equations describing when, how and where individuals move. This is 354 
done by, changing the values of the traits describing the coordinates of individual 355 
location. Those subroutines tend to have fine-scale temporal resolutions to allow for 356 
individual movement decisions. All the rules and equations should be clearly 357 
specified (and justified) in the conceptual model (Nathan et al., 2008). Associated 358 
with individual movement decisions is the concept of boundary conditions. What 359 
happens if individuals move to the edge of the spatial domain? Individuals can 360 
basically do two things, either be reflected back into the domain (as would be the 361 
case in a closed population moving within a fenced area, an island or an oversized 362 
spatial domain), or emigrate (i.e., leave the domain). If we implement emigration we 363 
may need to implement immigration as well. In some cases it is sufficient using a 364 
balanced emigration-immigration function by moving individuals back into the 365 
domain at the other end of the dimension they left (in a torus-like fashion). In any 366 
case, the best answer depends entirely on the system and the question at hand. 367 

Finally, a critical concept we must think about carefully is that of scheduling, or how 368 
processes having different resolutions are nested and, for those with the same 369 
resolution, how they are ordered. Even in simple models, sometimes it is not easy 370 
answering questions such as what or who should be first, as is the case for survival 371 
and reproduction, in a model with only one temporal resolution (see for example 372 
the model in Box 11.3 and think about the effect of calling survival first instead of 373 
reproduction). In models with an implicit time, as occurs with some very short-term 374 
IBMs dealing with individual decision-making, or within a temporal resolution, we 375 
still need to define the order of interaction between individuals, that is, their cueing 376 
or implicit timing of inter-individual interactions. Different schedules affect model 377 
behavior and results. Again, the conceptual model is critical here as well as the 378 
explicit listing of how many temporal and spatial resolutions we have for each of the 379 
processes involved (Berec, 2002). Once you have a schedule it also helps plotting a 380 
diagram describing it (Figure 2).  381 

11.2.7 Single model run, data input, model output  382 

The core model can be used to run single simulations. As such, it is not of much use 383 
apart from demonstration or educational purposes in regard to our conceptual 384 
model. Most compilers allow for a process called debugging, which permits 385 
detecting the existence of programming errors, often locating the place where the 386 
code is flawed. Therefore, this debugging compilation will probably be the first 387 
manner of execution that we face, in the beginning, to our despair, but very much 388 
needed to obtain a clean and consistent core model. Nevertheless, debugging does 389 
not solve the inconsistencies that we introduced in the conceptual model or in the 390 
questions (Fig. 1).  391 
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In order to run the model we need to parameterize it by introducing values to all 392 
model parameters (Box 11.6) and defining the initial condition (initial population 393 
size and structure and the environmental setting). After running a simulation (or 394 
many) we need to obtain some output describing model behavior and predictions 395 
(Box 11.6). Remember that in the conceptual model we had identified simulated 396 
data directly linked to specific questions and their a priori predictions. IBMs are 397 
stochastic models and, therefore, the output variables will yield different results in 398 
different simulation runs with the exact same parameterization and initial 399 
condition. In order to estimate the probability distributions of each of the output 400 
data a number of simulation runs must be repeated with each parameterization. A 401 
reasonable rule of the thumb is enough runs to obtain stabilized estimates of the 402 
mean and standard deviation of the output variables.  403 

11.3  Protocols for model documentation  404 

At this stage we have a general aim that breaks into a set of specific questions and 405 
their potential responses based on a priori expectations, a conceptual model 406 
describing the system and the potentially relevant processes involved (and their 407 
parameters), and a description of how those processes drive the interactions 408 
between individuals, between those and the environment and the environmental 409 
dynamics itself, generating the dynamics of the population. We have implemented 410 
the conceptual model into a simulation model in what I have called the core dynamic 411 
model. At this stage, it is crucial to document what we did so far before the model 412 
gets too complex. During the process of building the model we probably needed to 413 
modify some parts and details of the conceptual model to accommodate the explicit 414 
way we built it and why we did so (Fig. 1). Once we start analyzing the model, we 415 
will probably need to revise both the conceptual and the core dynamic models again. 416 
A process of continuous refinement is normal and it is not a problem in itself. 417 
Nevertheless, and as complexity grows, we have to document what we have, even if 418 
it needs be modified later on.  419 

Traditionally model documentation has ranged from simple verbal descriptions to 420 
very detailed descriptions and justifications, including pseudocode or even the full 421 
code of the model. Model documentation should run together with model building 422 
as it forces us to go through a process of thinking about how we are designing things 423 
and how all the components integrate. This documentation should include both 424 
model justification and a detailed description of its processes. For that reason, the 425 
refined version of the conceptual model, after the revision when constructing the 426 
model, should be the main part of the documentation.  427 

Some general guidelines can help with properly informing about our work. We need 428 
to be as clear as possible about the general aim and the specific questions to be 429 
addressed, including the a priori predictions and the list of model behaviors and the 430 
variables dynamically predicted by the model that will be used in the analyses. If 431 
using field or theoretical data to compare with the predictions of your model, be as 432 
clear as possible about the methods used and the quality of those data sources. Make 433 
explicit all rules, equations and schedules included in each of the processes, with the 434 
help of graphs and other schemes if needed (Fig. 2). Use mathematical notation to 435 
declare equations and also rules (such as conditional probability or Boolean algebra 436 
notation). List model parameters, including constants, in association with the 437 
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submodels they are implicated in, their description and the available estimates (this 438 
includes both the variability and the associated uncertainty), explaining and 439 
justifying the field and statistical methods used and/or the data sources. Make 440 
explicit all scales, domains, resolutions and how they integrate in each of the 441 
processes. Explain carefully how stochasticity is dealt with, including parameter 442 
sampling, randomization and any other decision that may affect the interpretation 443 
of the results (including for example data rounding and truncation). Finally, 444 
consider seriously publishing some version of your code, either in the form of 445 
annotated pseudocode (Box 11.3), the code of your core model, or all code produced 446 
for both the core model and the analyses (separated versions help in understanding 447 
what we did).  448 

There have been several attempts to make explicit a list of minimum requirements 449 
to document IBMs in the form of model documentation protocols (Mooij and 450 
Boersma, 1996). The most popular is the Overview, Design concepts and Details 451 
(ODD) protocol presented by Grimm et al., (2006), which has been updated and 452 
expanded by Grimm et al., (2010) and by Topping et al., (2010) who created the 453 
ODdox version for C++ code annotation and documentation. The result is a set of 454 
documents providing a heavily annotated and hyperlinked version of the ODD 455 
protocol linking model description to the source code. The ODD protocol or any 456 
other alternative can be used as a guideline to cross-check that we considered and 457 
described properly all the components of a model. The ODD protocol is a good way 458 
to organize and present information, but other alternatives maybe be more 459 
consistent with the aims and level of complexity of your model (Müller et al., 2014).  460 

11.3.1. The Overview, Design concepts and Details (ODD) protocol 461 

The ODD aims to offer a standard that provides an ordered sequence of information 462 
that allows readers to follow the logic and details of any IBM (Grimm et al., 2006; 463 
2010). It first starts with general information in the Overview section (Table 1), 464 
described by three elements: the purpose of the model, the state variables and scales 465 
and finally a short overview of the processes and the scheduling. The next section, 466 
the design concepts, describes the strategic design of the model. The current version 467 
includes a list of eleven elements, ranging from emergence and adaptation to 468 
collectives or stochasticity. The list of elements is a bit arbitrary and it is not in a 469 
particularly relevant order. Go through them and build an ad hoc list by selecting the 470 
ones relevant for you. The final section goes into an explanation of the model in 471 
detail, including the initialization, the input data and finally, a detailed description 472 
of all processes. All sections and subsections of the ODD are articulated as groups of 473 
questions (Table 1). The final result is a document in which relevant details of the 474 
model are described. Nevertheless, following the guidelines of the ODD does not 475 
ensure that the explanations make sense, especially if your conceptual model is not 476 
consistent and well thought out. In the process of building your conceptual model 477 
you can use the ODD questions to cross-check what you might be skipping.  478 

Grimm et al., (2010) assume that a single protocol can suit all potential model 479 
implementations and that the ODD protocol should be strictly followed. However, 480 
the question of whether a single protocol can be applied to a variety of 481 
implementations built to address very different questions remains unresolved. My 482 
view is a bit more unorthodox because depending on the aims, we can find 483 
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alternative ways to efficiently communicate our work. For example, in my view the 484 
clarity of the documentation of a model improves by clearly separating what belongs 485 
to the description of the core model from the description of the analyses. This 486 
includes different model parameterizations and initial conditions that are typically 487 
associated with specific analyses (which are normally several). In doing so, it is 488 
easier to understand the different steps, especially if the parameterization and 489 
initial conditions differ between analyses. Additionally, separating those two parts 490 
simplifies the distinction between what we consider as supported knowledge and 491 
the part that we will investigate in detail both in relation to model structure and 492 
parameterization.  493 

11.4  Model analysis and inference 494 

Analyzing a model is about understanding its behavior and its emergent dynamic 495 
properties under different conditions. The analysis of complex models is not a 496 
simple task. At this stage, the ecologist will use all her/his knowledge on 497 
experimental design and on statistical analyses, including the methods explained in 498 
this book. There is no single best way to analyze an IBM, with different approaches 499 
ideally yielding similar conclusions. Nevertheless, I offer some general guidelines to 500 
simplify the challenge. It is often difficult to distinguish between the phases of model 501 
building and model analysis because during the analyses we may be forced to 502 
redefine once again the initial conceptual model and the code, in another iteration 503 
of the modelling cycle (Fig 1; Grimm and Railsback, 2005). Normally we will follow 504 
a step by step program of analysis. I distinguish between four main steps. First, we 505 
need to go through a process of model debugging and consistency checking, 506 
followed by an evaluation of the consistency of model structure and a sensitivity 507 
analysis. Next come the steps of model selection, validation and calibration. Last, you 508 
should try to answer the questions that motivated the model within the inference 509 
constraints imposed by the previous results (Fig. 4).  510 

11.4.1 Model debugging and checking the consistency of model behavior 511 

Before going into your questions of interest, you should perform a thorough 512 
evaluation of model performance to detect errors arising from model design or 513 
implementation and determine if the behavior of the model makes sense. In this a 514 
priori checking you will detect many small problematic details and bugs that once 515 
removed will improve model consistency, saving a lot of time later on. Note that 516 
while writing the code of your model you were already debugging it at compilation 517 
time: any error appearing during compilation should have been corrected already 518 
(Box 11.4). Now we search for errors during execution time. The model should be 519 
able to run simulations with no errors during a single simulation run using a 520 
standard parameterization (the mean value and variability for all parameter 521 
estimates).  522 

The next step consists of forcing model behavior with different combinations of 523 
parameters set at extreme values (for example, very low or high survival rates). 524 
Testing boundary conditions will force working with many zeros and with large 525 
numbers (including many individuals), thus making errors to appear. It is a good 526 
idea to repeat this step by step, going through the different processes before making 527 
overall extreme parameterizations of the model. Tests may generate problems by 528 
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making forbidden or undefined calculations, such as floating point divisions by zero 529 
and other exceptions that the code does not handle properly. Many of the errors will 530 
be associated with exception handling, which depending on the language and 531 
compiler will be easy to solve. The following most important sources of errors will 532 
be associated with logical failures in scheduling and the way we introduce 533 
stochasticity into parameter values.  534 

Simultaneous to model debugging during execution, it is important to look for 535 
biologically implausible behaviors, especially when working at extreme 536 
parameterizations. Before concluding that an interesting or unexpected behavior is 537 
a new finding, we must consider the possibility that it is associated with something 538 
incorrect in model specification or coding. The dynamics of the model should be 539 
consistent with the general expectations of the conceptual model. It is a good idea 540 
to use graphical output to cross-check the relevant output in run time, as well as 541 
saving simulated data together with parameters and tracking other data not directly 542 
related with the model aims and emergent properties, such as realized reproductive 543 
and mortality rates. All this information will serve as a log file, helping to determine 544 
whether an unexpected model behavior is due to a problem with design or 545 
programing, or if it is a new emergent result. Be sure to update the documentation 546 
of the model to describe the changes made in the conceptual or core models. 547 

11.4.2 Model structural uncertainty and sensitivity analyses 548 

The next step in analyzing an IBM should deal with setting the context in which to 549 
interpret the results: what are the limits for the inference? This step has two 550 
complementary sides, one related to model structural consistency, as defined by the 551 
processes and how they are integrated, and the other to the parameterization of 552 
those processes (Fig. 4). Thinking in the structural uncertainty of a model consists 553 
of specifying alternative definitions of the processes that we have implemented, 554 
such as using additive or multiplicative processes or different functions such as 555 
power or exponential laws. It is important when we do not have a good empirical 556 
description or theoretical justification for the choices. For example, imagine that 557 
based on empirical data we implemented a function in which survival is affected by 558 
temperature, but there is no data on which function is best and how it needs to be 559 
integrated with other factors such as density. If the main reason to build your model 560 
is addressing questions regarding the impact of temperature variation on some 561 
relevant population traits, it will be a good idea to think of alternative ways to 562 
implement the processes, such as an additive or multiplicative interaction with 563 
density. The idea is to create two or more alternative model structures that will be 564 
subject to sensitivity analyses. Further analyses will be repeated for each of the 565 
alternatives and the results compared for consistency under a model selection 566 
framework. Sensitivity analyses will help to gain confidence on how the 567 
specification of the model may affect inference. Structural uncertainty should be 568 
evaluated for processes that have some level of uncertainty and for which we expect, 569 
a priori, a relevant role on model behavior (Fig. 4).  570 

In sensitivity analyses, we quantify how changes in the values of model parameters 571 
affect the value of the key output variables. This is achieved by repeatedly running 572 
the model with different parameterizations and measuring how the relevant 573 
outcomes respond. Depending on the aim of the analyses, we can differentiate 574 
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between two different types: sensitivity analysis sensu stricto and uncertainty 575 
analysis. In sensitivity analyses we define the range of values to be explored using 576 
biologically realistic values for each model parameter that we want to explore. For 577 
example, the boundary conditions might set the parameter hypervolume; using 578 
parameters between the minimum and maximum values reported in the literature. 579 
In this way, we can explore the potential behaviors of the system under plausible 580 
conditions. Conversely, in uncertainty analysis we sample only within the existing 581 
uncertainty around each of the parameter estimates to determine the variability of 582 
the response of the model in relation to the available information. Typically for some 583 
parameters we do not have accurate estimates from the literature or from empirical 584 
data, for instance, the probabilistic parameters used in stochastic rules, and this 585 
uncertainty needs to be taken into account to avoid over-interpreting the results.  586 

Sensitivity analysis is generally considered a key component of the quality 587 
evaluation of any model, for understanding the model itself and providing the 588 
context in which the rest of the results will be interpreted. For example, if the model 589 
aims to evaluate a conceptual hypothesis then the actual parameterization is not so 590 
relevant, whereas model behavior in a range of plausible conditions is. On the other 591 
hand, uncertainty analysis is particularly useful in indicating which parameters are 592 
candidates for additional research to narrow the degree of uncertainty in model 593 
results, and is a key component of models built for making predictions based on 594 
empirically estimated parameters. Something that is often overlooked in sensitivity 595 
analyses is the possibility of including how parameters interact by including 596 
covariation in parameter values. A final recommendation is avoiding sensitivity 597 
analyses using the central estimate of parameter values and an arbitrary small 598 
amount of variation (typically 5 or 10%) up and down. The range of values to be 599 
used should be well-justified.  600 

In sensitivity or uncertainty analyses two general approaches are used depending 601 
on whether all parameters are considered simultaneously or not. In local and one-602 
at-a-time analyses we sample the range of values of just one parameter while 603 
keeping all the others constant at their central estimate and then measuring to what 604 
extent the output of the model is affected. One-at-a-time approaches perform poorly 605 
when dealing with complex models such as IBMs and should in general be avoided 606 
(Saltelli and Annoni, 2010; but see Beaudouin et al.,. 2008). In global or multivariate 607 
sensitivity analyses we explore all the parameters simultaneously, repeatedly 608 
sampling the n-dimensional parameter hypervolume.  609 

The sensitivity analysis will require a substantial amount of coding only for this 610 
purpose. Therefore, making a specific version of the model for this is a good idea. By 611 
coding loops, one for each parameter and with as many steps as values needed for 612 
each of them, you can run a global analysis at once even if you have a lot of 613 
parameters to sample. There are several ways to sample the parameter 614 
hypervolume, from simply randomly choosing parameter values (very inefficient) 615 
to a complete factorial sampling design, which may be reasonable for a reduced 616 
number of parameters. These approaches become computationally challenging for 617 
relatively small models. With just 10 parameters with 5 values each running with 618 
100 simulation replicates to estimate the variability of the output requires 107 619 
simulation runs. In these cases, we can use a more efficient Latin hypercube 620 
sampling (Iman and Helton, 2006). Briefly, this technique is a stratified sampling 621 
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method commonly used to reduce the number of simulation runs necessary for 622 
sampling the parameter hypervolume. Each parameter is sampled using an even 623 
sampling method and then randomly combined sets containing all parameters are 624 
used to run the model. For each parameter the range of possible values is divided 625 
into non-overlapping intervals of equal probability size (Box 11.4). One value from 626 
each interval is chosen at random and this process is repeated for each parameter 627 
until we obtain a parameterization set. The key is that for every parameter each 628 
interval must be sampled only once until all intervals of all parameters have been 629 
used once. Then the process starts again. If the model is complex, it may be 630 
necessary to use a refined version of the Latin hypercube sampling that reduces the 631 
dimensionality of the problem by carefully analyzing some relevant processes 632 
before going into a simplified global analysis.  633 

In the end, we obtain a dataset including the parameter values used and one or more 634 
relevant model predictions directly related with the questions (such as overall 635 
population size, density, growth rates, extinction probability, mean time to 636 
extinction or sex ratio). All this information needs to be summarized in order to 637 
obtain a picture of the differential role of the parameters and their associated 638 
uncertainty. The most basic way to do this is simply by using a partial rank 639 
correlation analysis (Segovia-Juarez et al., 2004). A more inclusive approach is to 640 
run generalized regressions between model predictions (the average of the 641 
replicates for each parameterization) as dependent variable and model parameters 642 
as independent predictors (McCarthy et al.,. 1995). The resulting equations 643 
approximate the functions that relate the parameters of the simulation model to 644 
predictions in a simple way, while the standardized coefficients of the regression 645 
can be used to describe the sensitivity of model predictions to each of the input 646 
parameters (Revilla et al., 2004; Revilla and Wiegand 2008). The generalized 647 
version of this approach is referred to as Gaussian process analysis in which the 648 
behavior of the simulation model in regard to each of its predictions is approximated 649 
by a Gaussian statistical model in which the predictors are the parameters of the 650 
simulation model (Dancik et al., 2010). Remember that you need to report effect 651 
sizes and confidence intervals to give readers an idea of the magnitude and relative 652 
importance of each parameter effect. P values do not make sense here since the input 653 
parameters are known to generate the output, while the unlimited power provided 654 
by large simulated sample sizes makes their interpretation irrelevant. 655 

Finally, we need to warn you against using sensitivity (or elasticity) analyses to 656 
make strong inferences about the actual factors driving the dynamics of a real 657 
population. These analyses do not necessarily tell you much about which 658 
parameters should be managed in the field. It specifies what each of the parameters 659 
does and the strength of the effect, so avoid making any definitive conclusion on 660 
what might be going on unless you have some empirical indication that the 661 
parameters identified as important in the sensitivity analyses are the ones that need 662 
to be managed. For example, the fact that adult survival is the most sensitive (or 663 
elastic) parameter in your model does not guaranty that the population is declining 664 
due to low adult survival; it could be entirely due to a lack of recruitment. 665 

11.4.3 Model selection, validation and calibration 666 
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A bit trickier is comparing the outcome or outcomes of the model against a specific 667 
dataset. The comparison is usually made for different reasons, such as model 668 
selection, model validation and model calibration (Fig. 4, Table 2). If we are dealing 669 
with uncertainty in model structure, we will have alternative process specifications 670 
which can be assessed in their capacity to reproduce the observed data. In the case 671 
of validation, we typically have estimates of model parameters with their variability 672 
and uncertainty, which are then validated by evaluating their capacity to replicate 673 
an empirical dataset or some empirically observed behaviors, setting a credibility 674 
standard for that model structure, parameterization and question (Fig. 4). 675 
Calibration is a kind of model parameterization in which we estimate parameters 676 
from observed field data on model predictions by filtering out the parameterizations 677 
that do not match the data, by Gaussian process approximation or any other 678 
likelihood approximation (Hartig et al., 2011). It is important to note that we leave 679 
model parameterization for the analysis-inference and not for model building since 680 
this step is very important in understanding how the model behaves. This is due to 681 
the fact that very often parameterization is first about defining and then reducing 682 
the dimensionality of the model before making any strong inference such as 683 
management recommendations. Model parameterization by calibration (or inverse 684 
modelling) may use no a priori information on the actual parameters, or may use 685 
the available information as priors under a Bayesian calibration framework (Hartig 686 
et al., 2011). In mechanistic modelling, we assume that we can use information about 687 
the processes and how they integrate from other populations, whereas the 688 
parameters are just different realizations that we may observe. In model calibration, 689 
we can simultaneously perform the parameterization and the uncertainty analysis. 690 

This step requires the systematic comparison of empirical and simulated data in 691 
order to decide which of the tested parameterization sets or model structures 692 
reproduce the empirical data in a reasonable way by calculating the probability of 693 
reproducing the field data with a given model structure and parameterization. 694 
Typically, we run simulations until we obtain a distribution of the frequencies of the 695 
simulated observations that the model structure and parameterization can generate 696 
and from them calculate the probability of observing the field values. The 697 
comparison between the observed and simulated data can be straightforward, as 698 
the  difference or the sum of squared distances between the observed values and 699 
those obtained from the simulated data, or more efficient if we make the comparison 700 
only once against the summary statistics of the simulated frequency distribution 701 
(mean and variance). Conceptually, we can generalize all the alternative approaches 702 
as a kind of point-wise likelihood approximation of the goodness of fit of our model 703 
to the data (Hartig et al., 2011). As such, we need to calculate the likelihood of 704 
observing the empirical data for each model structure and parameterization. The 705 
final goal is finding the structure and parameterization that maximizes that 706 
likelihood, thus obtaining a parameterization of the model with field data on model 707 
predictions, obtaining an estimate of the uncertainty (for example, by knowing how 708 
many alternative parameterizations match our threshold of fit) or simply helping us 709 
to select the model structure that is best supported by the available data (Fig. 4). 710 
Hartig et al., (2011) review the different methods under a useful likelihood-based 711 
inference conceptual framework. The methods range from those that explicitly 712 
approximate the likelihood, such as approximate Bayesian computation, simulated 713 
(synthetic) pseudo-likelihoods or indirect inference, to those that allow calibrating 714 
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the model without explicitly approximating the likelihood, such as pattern-oriented 715 
modelling or informal likelihoods (Beumont, 2010; Hartig et al., 2011). The beauty 716 
of these methods is that the structural realism in the definition of processes at the 717 
right scales allows for inverse parameter estimation (Hartig et al., 2011; 2014; 718 
Wood, 2010). 719 

One of the classic ways to calculate the likelihood of obtaining the observed data 720 
given a model structure and parameterization makes use of central limit theorem, 721 
which allows us to calculate the probability of obtaining an empirical measurement 722 
from the summary statistics of the distribution of model outcomes for a given 723 
parameterization, if the simulated distribution can be approximated with a normal 724 
distribution (a parametric likelihood approximation, following the notation of 725 
Hartig et al., 2011). For each model prediction we calculate a match-score, for 726 
example, a Z score using the mean and the standard deviation of the simulated 727 
replicates (Revilla et al., 2004); while by setting different threshold probabilities for 728 
acceptance we can simultaneously evaluate multiple model predictions using a 729 
multicriteria approach, such as Pareto optimality assessment (Reynolds and Ford, 730 
1999). Alternatively, we can use a Bayesian framework to calculate the posterior 731 
distribution and proceed in a similar manner (Beaumont, 2010; Hartig et al., 2014). 732 
If the simulated frequency distribution generated by the model does not conform to 733 
a normal distribution (this typically occurs when using highly aggregated data 734 
which may generate multimodal distributions), then we may instead use a kernel 735 
density estimator to obtain a non-parametric estimation of the probability density 736 
function of the simulated distribution and subsequently calculate the probability of 737 
observing the empirical data from it (Tian et al., 2007). There are cases in which the 738 
variability in the observed data is high due to measurement error but the 739 
predictions of the model for the same type of data shows lower variability. In these 740 
cases it is advisable adding a tractable error term (parametric or non-parametric) 741 
on the side of the observed data to account for noise (Hartig et al., 2011). If we are 742 
evaluating alternative model structures, and therefore, we cannot be sure of the 743 
origin of the mismatch between observed and simulated data (structure, 744 
parameterization or stochasticity), it is advisable to use simpler measures of 745 
mismatch, such as the sum of squared distances between the observed and 746 
simulated data (informal likelihoods; Hartig et al., 2011) or some kind of ad hoc 747 
rejection filtering under the pattern-oriented approach (Grimm et al., 2005).  748 

Pattern-oriented modeling, also termed rejection or performance filtering (Grimm 749 
et al., 2005; Webb et al., 2010; Hartig et al., 2011), can be applied to models of 750 
dynamical systems. It is probably the most liberal approach in regard to model 751 
selection, validation and calibration, because it can also be used when the data to be 752 
adjusted (both the empirical and/or the simulated data) have complex distributions 753 
such as multimodal or multidimensional, or when the quality of the empirical data 754 
is poor or simply unknown. The method consists of defining criteria that allow 755 
classifying whether model structures or parameterizations match the observed data 756 
within a given explicit threshold, instead of calculating the actual likelihood of 757 
obtaining the observed value or a close enough value. The criteria used to define the 758 
thresholds can be diverse or even ad hoc, and may include some of the indexes of 759 
adjustment discussed above (for example, a mean squared difference or a Z score 760 
threshold). Additionally, we can use the error of the field data estimates to define 761 
the criteria. It allows using multiple ancillary data which in isolation do not contain 762 
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much information, but that in combination can provide a robust approximation to 763 
constrain model behavior within the limits of the available information (Wiegand et 764 
al., 2004b).  765 

Potentially, the number of variables that may be included in the empirical dataset to 766 
be directly used in the comparison with simulated output can be large. Often we 767 
aggregate the available information in some way to obtain a simplified set of data 768 
that can be compared with the simulated output. These variables are referred to in 769 
the literature as patterns, state variables, output variables or simply summary 770 
statistics (Hartig et al., 2011). The difficulty lies in deciding which of the many 771 
alternatives are statistically sufficient given the purpose of the model. The statistics 772 
need to convey information on the relevant properties of model dynamics. A good 773 
recommendation is to choose variables that operate at different spatial or temporal 774 
scales and hierarchical levels, including variables describing stationary and non-775 
stationary dynamics (Grimm et al., 2005; Wiegand et al., 2004b; Wood, 2010). 776 
Nevertheless, the question behind your model should be the key when you to decide 777 
which data is relevant, obviously, within the limits imposed by the available 778 
empirical information.  779 

All the methods discussed above require searching the potential parameter space in 780 
order to find the model structure or parameterizations best supported by data using 781 
some kind of numerical approximation (Bolker, 2008). In models with a reduced 782 
dimensionality, we can use a Latin hypercube sampling strategy. In more complex 783 
models, say above 20 parameters, depending on the availability of computing 784 
power, the programming language and how efficiently the model was coded, we will 785 
need a more efficient sampling strategy, such as Markov chain Monte Carlo 786 
strategies, including the Metropolis-Hastings and the Gibbs sampling algorithms, 787 
which start with an initial parameterization obtained from the parameter space, 788 
from which we generate a new parameterization by randomly moving a small 789 
amount within the parameter space. Then the likelihood, or similar, of the two 790 
consecutive parameterizations is compared, retaining the best one from which a 791 
new parameterization is obtained. There are lots of variants aiming to increase the 792 
speed, for example by reducing the correlation between consecutive 793 
parameterizations, and to avoid getting stacked in local likelihood maxima by going 794 
downhill with some probability. Another alternative is using sequential Monte Carlo 795 
approaches in which, starting with a set of parameterizations obtained from the 796 
whole parameter space, we calculate the point-wise likelihood and then weight each 797 
of them, for example by their normalized importance weight, according to their 798 
estimates. From this initial set we obtain a new set of parameterizations with 799 
probabilities according to their weights and repeat the process until some 800 
convergence criteria is met, such as that all parameterizations within the set are 801 
within a given likelihood threshold. Finally, we can consider using a numerical 802 
optimization algorithm when dealing with multiple data to be fitted under a pattern-803 
oriented approach (Table 2). Hartig et al., (2011) provide pseudocode algorithms 804 
for some of these numerical sampling methods. Applying these methods is most 805 
efficiently done by programming the routines within the coding environment. The 806 
methods in themselves are not complicated (though the specific jargon is) but 807 
require extensive coding. Remember making a specific version of the model for the 808 
purpose of validation and calibration. A potentially less efficient alternative is 809 
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generating the simulated datasets and then using some of the algorithm 810 
implementations available within R.  811 

11.4.4 Answering your questions 812 

At this stage, and after all the work done, we should have a clear idea of the questions 813 
to answer. The potential uses of IBMs are broad and flexible, as occurs with other 814 
stochastic simulation models, making difficult to summarize their uses (see 815 
examples given in 16.1.2). The first and most basic use consists of reviewing and 816 
integrating the available knowledge on a system. This is basically done by building 817 
the conceptual model and its implementation in a core model plus the sensitivity 818 
analysis over the biologically plausible parameter space and a validation of the 819 
model with independent data. We must give all the available information, making 820 
clear what is supported by knowledge and data and what are the assumptions and 821 
hypotheses which should be investigated further. From this initial step, the 822 
following typical use of IBMs consists of gaining new knowledge on how a system 823 
usually works, often evaluating the predictions of theoretical models and empirical 824 
generalizations for population regulation, movement, density dependence or 825 
interspecific interactions such as predation or diseases. Last, practical applications 826 
represent a broad field of use, including population viability analyses, the evaluation 827 
of alternative management scenarios for conservation, population control or 828 
exploitation, the evaluation of strategies to control diseases or measuring the impact 829 
of infrastructures on interpopulation connectivities, just to mention a few.  830 

All these uses have in common the description of model behavior under different 831 
scenarios. A scenario is defined by a model structure, an initial condition and a 832 
parameterization, which also includes the space definitions used in spatially explicit 833 
models, normally as maps. For the scenario we obtain frequency distributions of the 834 
relevant model outcomes by running multiple stochastic simulations. The simplest 835 
approach is just a qualitative or quantitative description of those outcomes, for 836 
example, by plotting the results in figures. It is much more common that we need to 837 
compare the results of one scenario against other scenarios, empirical data or 838 
theoretical expectations in a qualitative and/or quantitative way, as discussed in the 839 
previous section. Comparing the output of the model for alternative scenarios is 840 
more or less straightforward, especially if what we need is the relative evaluation 841 
against a desired standard. For example, we may need to evaluate alternative 842 
hunting strategies to estimate maximum yield, to reduce interannual variability in 843 
population size, or to minimize extinction risk. We can also use statistical 844 
descriptions to compare the distributions of outcomes for the different scenarios. 845 
The comparison of multiple scenarios, such as management alternatives, needs to 846 
be carefully thought out under the standard framework of experimental design (the 847 
virtual ecologist approach; Zurell et al., 2010). 848 

Finally, one important issue to consider when designing the experiments is the 849 
dependence of model behavior on both its current and past states (model 850 
hysteresis). The initial conditions or a perturbation often impose a transient state 851 
phase after which the system may reach a steady state with stationary stochastic 852 
dynamics, which occurs when the dynamic properties of the model do not change 853 
over time, with the frequency distributions of model outcomes remaining stable. 854 
Depending on the aims, we may need to focus on the non-stationary dynamics, for 855 
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example, when studying the impact of an event or perturbation, such as the success 856 
rate of different reintroduction scenarios varying in the number of animals released 857 
(Kramer-Schadt et al., 2005) or a PVA affected by the initial conditions imposed by 858 
an empirical estimate of population size and structure (Wiegand et al., 1998). We 859 
can also focus on the steady state phase, as we do when calculating the intrinsic 860 
mean time to extinction in PVA (Grimm and Wissel, 2004), or on both, transient and 861 
steady phases, for example, when investigating the impact of different management 862 
activities starting with an observed initial population size (Wiegand et al., 2004a).  863 

 864 

11.5  Final thoughts 865 

This chapter is a bit different from the others. More than discussing a specific 866 
method with a lot of examples, it deals with a research approach that can be 867 
implemented in many alternative ways to address a potentially very broad range of 868 
questions. As such, it borrows methods from many disciplines, including not only 869 
ecology, but also statistics, complex systems and algorithmic theories and software 870 
engineering. I did not intend to present a thorough review of the literature in regard 871 
to examples of IBM implementations and applications. Instead, I aimed to provide 872 
an overview of the whole process, from the beginning to the end of the research 873 
program, focusing on those parts that might be more challenging for newcomers and 874 
hopefully providing some useful guidelines. Using IBMs is by no means easy. The 875 
challenge remains in having a good conceptual model and very clear questions early 876 
on. Analyzing the model requires some experience in order not to be overwhelmed 877 
or lost in irrelevant detail. As with using any other approach that relies on 878 
programming, the learning curve may be steep, but it should lead somewhere, and 879 
knowing where to go is on the side of the user. Remember that, by itself, building a 880 
model is not the question to answer.  881 

I provide some toy models in the online materials. They are built merely to illustrate 882 
one of the many different ways you may choose to start coding an IBM. This should 883 
help you to feel more comfortable with how IBMs are built. Those examples are not 884 
core models, just out-of-the-box toy models for you to play with, modify, corrupt, 885 
modify again and in this manner learn a bit more about the logic behind this research 886 
approach. Then, with the help of this chapter and the methods presented in the rest 887 
of the book, you should be able to address your research questions.  888 
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Table 1. The Overview, Design concepts and Details (ODD) protocol (modified from 1062 
Grimm et al., 2006; 2010).  1063 

Elements  Questions 
Overview Context  and general information 

1. Purpose  What is the purpose of the model? 
2. Entities, state 

variables and 
scales 

What entities (e.g., individuals, collectives) are in the model? By what state 
variables (attributes and traits) are these entities characterized? What are 
the temporal and spatial resolutions and domains of the model? 

3. Process overview 
and scheduling 

Who (entity) does what, and in what order? When are state variables 
updated? How is time modeled, as discrete steps or as a continuum over 
which both continuous processes and discrete events can occur? 

Design  Strategic considerations 
4. Design concepts  

4.1. basic 
principles 

Which theories, hypotheses, assumptions or modeling approaches are 
behind a model’s design? How were they taken into account? Are they used 
in submodels or at the system level? Will the model provide insights into 
the basic principles themselves?  

4.2. emergence What model results are expected to vary in complex and perhaps 
unpredictable ways when particular characteristics of individuals or their 
environment change? Are there other results that are more tightly 
imposed by model rules and hence less dependent on interactions? 

4.3. adaptation What adaptive traits do the individuals have? What rules do they have for 
making decisions or changing behavior in response to changes in 
themselves or their environment? Do these traits explicitly seek to 
increase some measure of individual success regarding its objectives, or, 
instead, cause individuals to reproduce previously observed behaviors? 

4.4. objectives If adaptive traits explicitly act to increase some measure of individual 
fitness, what exactly is that objective and how is it measured? When 
individuals make decisions by ranking alternatives, what criteria do they 
use?  

4.5. learning Do individuals change their adaptive traits over time as a consequence of 
experience? If so, how?   

4.6. prediction How do individuals predict the future conditions (either environmental or 
internal) they will experience? What internal models do they use to 
estimate future conditions or the consequences of their decisions? What 
tacit or hidden predictions are implied in these internal model 
assumptions? 

4.7. sensing What internal and environmental state variables (including those of other 
individuals) are individuals assumed to sense and consider in their 
decisions? Are there mechanisms by which individuals obtain information, 
or are they assumed to know these variables? 

4.8. interaction What kinds of interactions among agents are assumed? Are there direct 
interactions in which individuals encounter and affect others, or are 
interactions indirect? If the interactions involve communication, how is it 
represented? 

4.9. stochasticity What processes are modeled as random or partly random? Is stochasticity 
used to reproduce variability in processes for which the actual causes of 
the variability are unknown or not relevant? Is it used to model events or 
behaviors with a specified probability? 

4.10. collectives Are there social networks? If so, is its structure imposed (a priori 
additional entity) or emergent? Are collectives affecting, or been affected 
by the individuals?  

4.11. observation  What data are collected from the simulations for testing, understanding, 
and analyzing the model? How and when are they collected?  

Details Detailed technical description 
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5. Initialization What is the initial state of the model at the beginning of a simulation run? 
Is initialization always the same, or is it allowed to vary among 
simulations? Are the initial values chosen arbitrarily or based on data? 

6. Input data Does the model use input from external sources such as data files or other 
models to represent processes that change over time? 

7. Submodels What, in detail, are the processes listed in point 3? How were they 
designed, parameterized and tested? What are their parameters, 
dimensions and reference values? 

 1064 

  1065 
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Table 2. Some issues to consider when comparing empirical and simulated data for 1066 
model selection, validation and calibration.  1067 

Data  
Key data Empirical data directly related with the questions to be answered with the 

model.  
Ancillary or 
secondary data 

Empirical data not directly related with the questions. It contains 
information useful in model selection and calibration. Often corresponds 
to data at discordant spatiotemporal scales. 

Estimates  Key and secondary data can be quantitative, including point estimates and 
their uncertainty and variability, or qualitative, such as trends  

Summary statistics Aggregation of data into new simplified yet informative statistics (for 
example calculating a growth rate from a raw series of census data). This 
is often done to simplify the comparison between data and predictions.  

Single vs multiple The amount of data can vary from a single key variable to multiple key 
variables and secondary data.  

Predictions  
Symmetry We need to calculate as model output the same key and secondary 

predictions as with the empirical data. 
Single 
parameterization 

For a given parameterization we generate a frequency distribution of 
model predictions by repeating a number of simulations with the 
parameterization. 

Output formats Predictions can be obtained as graphical outputs to visualize the results 
and saved into files. It is convenient saving the parameterization within the 
output files. 

Multiple 
parameterizations 

Often we need to repeat the process for multiple parameterizations 
obtained by moving across the parameter space. 

Comparisons  
The logic Systematically compare data and predictions to estimate the likelihood of 

reproducing the observed data with a given parameterization and model 
structure. 

Types of 
comparisons 

Rejection filtering by using pattern oriented modelling or informal 
likelihoods  

 Direct calculation of the likelihood by running a sufficiently large number 
of simulations 

 Informal likelihoods (e.g. sum of squared differences between data and 
predictions) 

 Non-parametric likelihood approximations (e.g. kernel density 
estimation) 

 Parametric likelihood approximations (e.g. Z scores) 
 Approximate Bayesian computation 
Methods to define 
parameterizations 

Systematic search of the parameter space when the number of parameters 
is low 

 Latin hypercube sampling for more complex models 

 Markov chain Monte Carlo strategies: Metropolis-Hastings and Gibbs 
sampling algorithms and their variants. 

 Sequential Monte Carlo approaches, also known as particle filters or 
bootstrap filters 

 Numerical optimization methods such as genetic algorithms, simulated 
annealing, simplex algorithm or support vector machine algorithms 

 1068 

 1069 
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 1071 

Box 11.1  Programs and software: A field guide to some individual based coding 
environments  

We can use three types of approaches: using software that allows for scripting using 
interpreted languages, general multipurpose programing languages that allow for object 
oriented programing, or specialized development environments created specifically to 
build agent based models.  

 

Approaches useful to build demonstrator models 

We can create IBMs using software which allows for scripting, as is possible in some 
spreadsheets such as Gnumeric, LibreOffice Calc or proprietary MsExcel, noting that you 
need some knowledge of Visual Basic for Applications, Python or any other supported 
scripting language to program the macros (e.g., Macal and North 2010Raisl). These 
implementations are useful as demonstrators for learning concepts and teaching or for 
implementing structurally very simple IBMs for which the analyses are simple. We can also 
build IBMs in environments that are very efficient in making generalized scalar operations 
such as in vectorial or array programming languages, such as R or Matlab, or even in more 
eclectic languages such as Wolfram (running in proprietary Mathematica).  

R is a software platform that allows for the efficient manipulation and analysis of relatively 
small datasets. It is so flexible that we can also build IBMs with it. However, doing so is only 
reasonable for learning purposes or when dealing with very simple IBMs (few parameters 
and individuals). R uses array programing, operating with all the data simultaneously, 
making the processing of large datasets inefficient. Therefore, it is slow and resource 
hungry in dealing with the data we create when, for example, running a sensitivity analyses 
across many-dimensional spaces. It is also an interpreted language, i.e., does not compile 
the commands we write into machine code, making simulations much slower than other 
alternatives.  

 

General purpose development environments  

This group refers to compiling object-oriented programming languages that allow 
programming totally ad hoc models. Normally the source code is written within a computer 
program called compiler that transforms the source language into a machine compatible 
language that can be executed by the computer. This approach is more efficient than 
interpreted languages, allowing for much faster simulations. Creating individuals is 
straightforward using objects or classes. After compilation we can obtain a range of 
possibilities, from a self-contained executable file to a sophisticated application with a 
detailed Graphical User Interface (GUI, normally created by using Forms) that may allow 
for interaction with the user during the initialization (e.g., for parameterization), a 
graphical inspection of model behavior during run time and also the exploration of the 
results. We can cite C++, Python (to some extent) or Java as general languages, with 
different derivations of Fortran and Object Pascal being very popular in academic and 
scientific applications. All of them have many compilers available. If you have some 
experience programing this would probably be your best way to proceed. 

To run the model we have several alternatives, very much dependent on the language we 
are using and the environment (compiler and operating system). The most basic is a batch-
like mode in which, after asking for execution (e.g., by clicking in the exe file created by the 
compiler after a successful compilation), all the code is executed at once with no further 
intervention on our part. In most modern programing languages we interact with a 
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compiler that includes prewritten components (library-like) that can be used and reused 
allowing for fast model construction and deployment. Forms are the most basic of such 
components when running the program. They create a window that allows for interaction 
between the user and the model at run time. Many other components can be used, including 
buttons to be inserted in the form which execute some code when we click on them. Forms 
and other components with which we interact are part of the GUI of our model. If, for 
example, the pseudocode in Box 11.3 was written in a compiler allowing for forms, we 
could add to it a button which on a click would run the subroutine for population dynamics.  

 

Specialized development environments: 

These are just implementations built using general programing languages but that offer 
through an Application Programming Interface (API) access to precoded libraries that can 
simplify the initial work of making explicit the conceptual model (Railsback et al., 2006). 
Using a specific environment would save you a lot of time if you have no experience 
programing. Running the model in specialized development environments is 
straightforward, just follow the program instructions. Specific environments for building 
IBMs have their own detailed documentation and many examples to build upon. A non-
exhaustive list would include: 

 ALMaSS, Animal, Landscape and Man Simulation System. A complex highly specific 
model, with detailed implementations built for different species (e.g., voles, skylarks). The 
model is spatially explicit, including individual movement behavior, a landscape model that 
can be dynamic and a weather simulator. Open source project written in C++. Topping et 
al. (2003).  http://ccpforge.cse.rl.ac.uk/gf/project/almass/   

 GAMA. A highly flexible system that allows for the development of complex spatially 
explicit models of potentially very large populations. The conceptual model is coded in 
GAML language, which is a derivative of XML. Allows for calling R and SQL code using 
several DBMS. The user interface is based on the Eclipse platform (which is itself mostly 
written in Java). Grignard et al., (2013). http://code.google.com/p/gama-platform/  

 Repast. A set of open source platforms to perform agent-based modelling and 
simulations, including spatially explicit models. Different implementations either including 
Java or C++ coding systems. Allows for fast simulations and large and very complex models 
to be built. Very complete and with many tools available. Macal and North (2009). 
http://repast.sourceforge.net/  

 Mason. Multiagent simulation of neighborhoods. It is a discrete event agent based 
simulation platform implemented in Java (requires experience with this language). It is 
fast, flexible and portable across machines, with good capacity to run in batch mode with 
no visualization. Luke et al., (2005). http://cs.gmu.edu/~eclab/projects/mason/  

 NetLogo. A very intuitive and easy to use system to develop simple grid-based 
models. Recommended for people with no programing experience. Based on a language 
derived from Logo (but built in Java), with many primitives (built-in commands). Includes 
a collection library with many ecological model examples. Well suited for educational 
purposes, but simulations are very slow (does not compile into binary). Can be linked and 
called from R using Rnetlogo. Wilensky (1999). http://ccl.northwestern.edu/netlogo/  

 Swarm. It was the first platform developed for agent based simulation modelling. 
Initially designed in Objective-C, currently runs in Java. Well organized and stable. 
www.swarm.org   
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Box 11.2  The population: creating the individuals.  
There are two general ways to define and create individuals in general purpose 
development environments. The methods used in specific development environments 
can match these or be more graphical.  

Lists of objects 

It consists of using a list to generate a collection of objects where the list refers to the 
population, and a class template of objects is used to represent agents or individuals (Box 
11.3). Within the object oriented programing paradigm, classes are created to serve as 
templates to define objects, which in our case will refer to individuals and the properties 
or variables characterizing them. They can be seen as data structures. Additionally, in all 
languages, classes can have methods associated with them. In principle we can create our 
template for individuals without needing methods, using simplified class versions, if 
available, (e.g., record in Pascal, or struct in C++). Once we have created (declared in 
programming jargon) the data structure for our individuals, we need to declare and 
create a list to manage a collection of pointers, each of which will be used to link each 
individual we create. In such a manner we will be able to locate and distinguish 
individuals even if they have the same trait values. The list can be seen as a container that 
facilitates the management of individuals, allowing for adding, removing (and 
destroying), searching, sorting, and counting among other useful methods. In summary, 
we simply have to create the population (list) and add the number of individuals (objects) 
we need, each of them with their own set of descriptors as specified in by the conceptual 
model. Running many simulations can lead to problems of memory usage and allocation 
in the computer, depending on the environment, language and compiler. To avoid this 
situation we need to do the housekeeping of managing memory when destroying 
individuals (or any other class) and when dealing with subroutines (for example, freeing 
resources such as virtual memory). 

Dynamic arrays 

The second method consists in using dynamic arrays (arrays are simply vectors or 
matrices in programming jargon). Obviously they also represent a data structure in which 
each cell has a single value. In dynamic arrays we can keep the number of dimensions 
variable in run-time. Therefore, by keeping constant the dimensions characterizing the 
traits and variable one dimension representing the number of individuals, we can 
describe a population. It is easy to understand how they work by analogy with a table in 
a database: the columns describing trait variables will be a fixed dimension, each of which 
represents a trait, and each of the rows will be an individual. This second dimension will 
be dynamic, i.e., with a variable size because we should be able to create and delete items. 
Dynamic arrays also come with useful methods associated with the management of the 
items they contain. 
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Box 11.3  Pseudocode algorithm describing a basic IBM.  
It represents a population with N individuals and with reproduction and survival as 
demographic processes. We follow the list-class approach to create the population. The 
model represents an exponential growth system (for example to evaluate a reintroduction 
in the short term or a population collapse). The explicit parameters of this model are N0 
initial population size; PR reproduction probability; PS survival probability; max_age 
maximum age; t number of time steps simulated. Note that there are other implicit 
parameters such as litter size, a constant that work as a model assumption. We move along 
all individuals of the population using conditional loops (such as Do While- or For- loops, 
which are sections of code that are repeated as long as a condition is met); note that we can 
call one subroutine from another (as for survival called from population dynamics 
subroutine). 
 
//Declaring a container for our population, named “Population” 
1: list Population 
 
//Declaring the data structure for individuals (their traits) 
2: class Individual 
 Sex: string 
 Age: integer 
  
//Initializing a population of size N0;  
3: procedure Initialize  
4: create Population 
5: with Population do 
6: for 1 to N0  
7: create individual 
8: individual.sex = random(female/male) 
9: individual.age = random(maximum_age) 
10: add individual  
11: endfor 
 
//subroutine for reproduction with a breeding probability PR 
12: procedure Reproduction 
13: with Population do 
14: N = Population size  // assign current population size to variable N 
15: for i =1 to N do 
16: individual= [i] 
17: if individual.sex=f  then 
18:  if random<PR  then  
19:  begin 
20:   create individual 
21:   individual.sex = random(f/m) 
22:   individual.age = 0 
23:   add individual  
24:  end 
25: endfor 
 
//subroutine for survival with a survival probability PS 
26: procedure Survival 
27: with Population do 
28: N = Population size 
29: for i =1 to N do 
30: individual= [i] 
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31:  if individual.age>max_age then delete individual else 
32:   if random>PS then delete individual else 
33:    individual.age=individual.age+1 
34: endfor 
 
//subroutine for population dynamics; this is the procedure we call to run the model 
35: procedure Dynamics 
36: N0 = # 
37: t = # 
38: PR = # 

39: PS = # 

40: max_age = # 
41: Initialize 
42: for time = 1 to t do 
43: Reproduction 
44: Survival  
45:  N = Population size 
46:  plot time vs N 
47:  save results 
48: endfor 
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Box 11.4  Parameters, arguments and pseudorandom numbers 
Parameters and arguments 

With model parameters we refer to values that are relevant in our conceptual model and 
that need to be considered either by themselves or as part of the functional relationships. 
Their value can be constant in any parameterization (e.g. maximum life expectancy) or 
can change between parameterizations. Additionally, model parameters can be sampled 
from a distribution to represent not only the means but the variability of their estimates. 
Arguments are information that we track at run time. They are normally needed by 
subroutines or commands, for example, population size at a given time of a simulation, 
which may be required in itself as output or to calculate density. They are sometimes 
referred as summary statistics (Hartig et al., 2011). 

Parameters and arguments are stored as variables which are identified by a symbolic 
name (N for the argument population size or PS for the parameter defining survival 
probability Box 11.3). Variables can be local or global depending on their scope. Typically 
we tend to use local variables when dealing with information required only within a 
subroutine (e.g., the variable describing the counter of a loop) and global ones when 
needed throughout the model. Depending on the language that we are using, variables 
may need to be explicitly declared, initialized, emptied before reuse and the type of 
information they can store needs to be defined a priori (for example, a string or an integer 
value). One important distinction is between variables that can hold a single value and 
arrays that can have multiple ordered values in one or more dimensions (i.e., vectors and 
matrices).  

Variability and pseudorandom numbers 

Some (or most) of the parameters used to parameterize a model have some associated 
variability in relation to both uncertainty in the empirical estimates and natural 
variability, typically in time, space or associated with interindividual variability. These 
sources of stochasticity need to be dealt with, first in the conceptual model by identifying 
and justifying which of them are relevant and then when defining the parameterizations 
that will be used for sensitivity and further analyses.  

In order to obtain a stochastic value from a known distribution we use standard 
procedures that generate pseudorandom numbers and that are available in all compilers. 
These procedures need to be initialized with a seed number. If we always use the same 
seed, we will obtain the same sequence of numbers, which is helpful in detecting errors 
in the code. Typically, when running simulations we use different seeds coming from a 
highly variable source (such as the clock of the computer, with the help of the relevant 
function), thus making the sequence more unpredictable (be aware that some of the 
algorithms can be poor, with relatively short return rates).  

Pseudorandom number generators produce numbers from a given distribution, usually a 
uniform distribution between 0 and 1. Unless the probability density distribution that we 
need is already implemented in the compiler, as often occurs with the normal distribution 
(with a given mean and variance that we need to specify), we can use the pseudorandom 
numbers obtained from the uniform distribution to randomly sample any other 
probability density distribution or discrete probability histogram with a bit of thought 
and simple math: by rejection sampling or using the inversion method (inverse transform 
sampling) in which we use the cumulative distribution function of the known probability 
distribution.  
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Often we may have erratic errors occurring at low rates. To locate where they occur in 
the code, it helps to switch off the randomization process used to generate pseudorandom 
numbers. In that way, the error will always occur at the very same point of the simulation, 
allowing you to locate the problem. We can use breakpoints in the code just before the 
error happens and then run the code line by line from within the compiler. 
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Box 11.5  Space representations  
We can use two simple approaches to define space by using either a continuous or a 
discrete space.  

Continuous space  

In this case the location of each individual within the spatial domain is defined using a 
Cartesian or polar representation. This approach is typical of applications in which 
individuals move independently of an environment or at most their movement is affected 
only by a few spatial references that we can track with their coordinates, such as the 
location of other individuals or the location of a nest. The location of each individual is 
kept as individual traits (its coordinates) that change when it moves, whereas the spatial 
resolution is given by the resolution of the numeric values used (e.g., integer or floating 
types). Nevertheless, it is perfectly possible to use more complex vectorial map 
representations, which will require a bit more thinking and recalling the trigonometry 
we learned in secondary school 

Discrete space 

This approach is used in cases with more complex spatially explicit environmental 
properties, such as several levels of habitat quality affecting survival or movement. In that 
case we can represent a map as an array of one, two or three dimensions (more akin to a 
raster GIS landscape map), depending on the required dimensionality: one for 
landscapes, such as rivers, that can be represented linearly; two for x and y landscapes, 
and three if we need x, y and z coordinates such as in the ocean, or if using a dynamic 
landscape (x, y and t). In this array, each dimension is indexed between 0 and a maximum 
value (as defined by the domain), with the index representing the spatial location 
(coordinates) and the value at that location some relevant environmental property (for 
example, 1 for presence of a nest, 0 for absence; or different values representing different 
habitat qualities). The discrete space represented by the array has a typical resolution 
(e.g., 10x10 m or 5x5 km) which is not explicit in itself. A good way to visualize this is to 
think about the typical bidimensional map represented as a grid or a raster map with x 
and y coordinates and a stored value within each grid-cell. Grid cells can be square or take 
other shapes (hexagonal grids; Liu et al., 1995; Letcher et al., 1998). Very often the 
resolution of the map is also used to define the coordinates of the position of individuals, 
thus using only one spatial resolution in the model. If we do not use the same resolution 
we have to deal with the scaling between the two, the one for individuals and the one for 
the map, with some rules (such as rounding or truncation, behavior at the border of grid 
cells, etc.). For most applications grid-based approaches may be sufficient, whereas for 
very large domains it can be computationally demanding. 
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Box 11.6  Data in, data out 
There are three ways to parameterize a model. The simplest is by typing assigning 
statements in the code. For example, we can define that the variable storing the maximum 
age that an individual could reach equals 10 years (max_age = 10 in Box 11.3). This can 
be done with all the required information. Nevertheless, this approach is normally used 
with parameters that will not change in between simulations (such as constants).  

If our model has a GUI, we can add components to it on which we can specify parameter 
values. There are many types of components, such as text, combo or drop-down list boxes, 
all of which have a default value that can be changed again in the form once the code is 
executed. Those values can easily be assigned to the relevant parameters. This method is 
useful to explore model behavior. 

The most efficient way for the analyses is using standalone files in which we specify all 
the parameterization/s at once. The easiest is using text files with information delimited 
in some way (e.g., comma, space or tab separated values) to allow for easy identification 
of the values. Once the file is open and read, we can use a series of assigning statements 
to initialize all the variables. All this can be programmed in a subroutine which will be 
run early in the model to load all the parameters. Other types of files that can be used are 
data tables belonging to a database. This is a bit more complex since we would need to 
install the required ODBC (Open Database Connectivity) drivers for the specific database 
engine (e.g., MySQL, PostgreSQL or DB2) and some libraries in our compiler.  

Retrieving output data is done in a similar way to input data: plotting graphical output in 
the GUI, saving it in text files or using a database engine from within the model. For 
example, we can add a graph component to plot the trajectory of population size (Fig. 3). 
Retrieving graphical output is very useful in the initial phases of model evaluation and 
analysis, whereas saving data in files is the standard for in-depth analyses. Keeping the 
output data together in the same files with the model parameters used (and the 
constants) is always a good recommendation to avoid future confusion.  
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Figure 1. Simplified scheme of the modelling cycle for model design, including the 1082 
modifications that often need to be introduced during consistency checking and 1083 
analyses, both in the conceptual model and its implementation in the core model 1084 
and even in the way we develop the question and predictions at hand. 1085 
 1086 
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Figure 2. Schematic flow chart depicting the scheduling of a time step for the model 1088 
described in Box 11.3. Time resolution is one year and space is implicit. 1089 
 1090 
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Figure 3. Graphical output for population size simulated with the model given in Box 1092 
11. 3 and parameterized with N0 = 30; PR =0.6; PS =0.9; max_age = 10; t =100. The 1093 
plot corresponds to 10 simulated population trajectories and their average (bold 1094 
line). With this parameterization we observe two extinctions and the effect of the 1095 
initial condition lasting for the first 15 years.  1096 
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Figure 4. Schematic representation of the analyses of IBMs, including the steps of 1099 
model debugging and consistency check, sensitivity and uncertainty analyses and 1100 
model selection, calibration and validation. Key model predictions refer to the 1101 
questions related with the questions for which the model was built. In the end, the 1102 
initial questions should be answered within the inference constraints imposed by 1103 
the results. Ideally, the results should help in improving the conceptual model. 1104 
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