
1

Revilla E (2020). Individual and agent-based models in population ecology and 1
conservation biology. Pp: 237-260 In: Population Ecology in Practice. First Edition. 2
Eds Murray DL, Sandercock BK. Wiley-Blackwell, Hoboken, New Jersey. 472pp 3
ISBN/ISSN: 0470674148, 9780470674147 4

 5

11 6

INDIVIDUAL AND AGENT-BASED MODELS IN POPULATION 7

ECOLOGY AND CONSERVATION BIOLOGY 8

 9

Eloy Revilla 10

Department of Conservation Biology, Estación Biológica de Doñana CSIC; Calle 11
Américo Vespucio s/n; E-41092 Sevilla, Spain 12

 13

 14

Summary 15

Individual-based or agent-based models are a type of stochastic simulation models 16
in which explicit agents or individuals interact with each other and the environment 17
to generate system dynamics. The use of these models is linked to questions dealing 18
with complex systems and is more akin to a research program than a method in 19
itself, burrowing techniques from many different disciplines. First, the general aim 20
and the questions to be addressed with the model, including the a priori 21
expectations, must be explicit. The second step includes building the conceptual 22
model based on the aim and the empirical and theoretical knowledge available. The 23
conceptual model is then implemented in a core model which should be able to 24
perform a single simulation run. The core model includes the definition of 25
individuals and their traits, the functional relationships, the environment and its 26
properties, the temporal and spatial domains, resolutions and boundary conditions 27
and model scheduling. A single model run should produce an output that allows for 28
an early evaluation of model consistency and that can be analyzed later on. At this 29
stage, the conceptual model and the core model should be carefully documented. 30
Finally, analyzing the model may require several steps, including model debugging 31
at run time and an evaluation of the consistency of model behavior at the relevant 32

2

parameterizations and at extreme values; the evaluation of structural uncertainty 33
and sensitivity analyses, including uncertainty analyses; the use of model selection 34
techniques, if there are alternative model specifications; model validation and 35
calibration, which consists of estimating model parameters by systematically 36
comparing empirical and simulated data. Ultimately, the successful use of these 37
models is highly dependent on having a clear aim and a good conceptual model. 38
Given the complexity of the questions these models can address and the large 39
flexibility that is allowed in analyzing them, this chapter is just a brief introduction 40
to their construction and use. 41

 42

11.1 Individual and agent-based models 43

Individual-based models (IBMs) belong to a broad class of stochastic simulation 44
models in which the individuals (or more generally agents) of a population are 45
explicit and identifiable, interacting under a set of rules within a given environment 46
(DeAngelis and Mooij, 2005; Grimm and Railsback, 2005). Each individual is 47
characterized by specific properties and state variables such as sex, age, 48
reproductive status, body condition, the coordinates defining its spatial location or 49
its genetic make-up. IBMs may range from very simple to extremely complex 50
implementations. Nevertheless, the conceptual simplicity is one of the reasons why 51
IBMs are becoming so pervasive in disciplines dealing with complex systems, such 52
as astrophysics, cell biology, the social sciences or ecology (Gilbert, 2008; Grimm et 53
al., 2005). Complex systems are characterized by emergent properties generated by 54
the interaction among its components and the environment. Typically, the behavior 55
of those emergent properties is affected by stabilizing negative feedbacks and/or 56
destabilizing positive feedbacks, as occurs with density dependent processes or 57
with Allee effects. Conceptually, it is easy to grasp what IBMs are, as it is to build 58
them if we have an intermediate command of a programming language. The difficult 59
part is using these models in a way that is useful for our purposes and then 60
communicating the methods and results to third parties in a clear and logical way. 61
In this chapter I will try to help you in doing so. 62

Populations are just collections of different individuals. The uniqueness of 63
individuals affects their realized fitness thus contributing in different amounts to 64
the dynamics of the population to which they belong. Fortunately, the heterogeneity 65
of individuals can be categorized into several main types that summarize the most 66
relevant sources of heterogeneity in fitness, such us demographic classes, 67
phenotypes or genotypes. In population ecology, we can take advantage of this 68
structuring by averaging reproduction, survival and movement parameters within 69
each of these groups and then describe or project population dynamics using those 70
estimates. Nevertheless, class-specific demographic parameters vary through time 71
and for individuals in different spatial locations, normally as a consequence of 72
changes in relevant environmental variables. 73

Populations belong to the most challenging type of complex systems: adaptive 74
systems, i.e. the responses of individuals can change (Grimm and Railsback, 2006). 75
Apart from evolutionary responses, which may occur within a small number of 76
generations making them relevant for population dynamics (DeAngelis and Mooij, 77

3

2005), individuals can show behavioral and other phenotypic responses (including 78
memory, maternal effects or the effect of previous conditions within the domain of 79
each individual), having the capacity to adapt their responses to environmental 80
conditions in unexpected ways, making demographic functional responses very 81
dynamic (Kuparinen and Merila, 2007; Doak and Morris, 2010). Methods dealing 82
with complexity are especially useful for questions dealing with real populations. 83
Nowadays, the major challenge of population ecology lies in having some forecasting 84
capacity for populations composed of heterogeneous and adaptive individuals living 85
in an environment which is also heterogeneous and dynamic in time and space. 86

 87

11.1.1 What an individual-based model is and what it is not 88

The typical implementation of an IBM comes in the form of a computer program that 89
executes, in a dynamic way, the processes describing the interactions among a set of 90
individuals and their environment, generating relevant emergent properties at the 91
population level, such as trajectories of population size in time, age, stage or sex 92
distributions or distributions of density in space. Therefore, IBMs are simply a way 93
to generate simulated data using stochastic numerical simulations. In itself it is not 94
a method of analysis based on some statistical paradigm and therefore it departs 95
from most of the methods described thus far in this book. To be of any use, the 96
simulated data needs to be summarized by analyzing it in a similar fashion to that of 97
field data, using everything we have learned so far, from how to generate and test 98
sensible hypotheses, to estimating demographic parameters or analyzing time 99
series and spatial structure. Therefore, the use of IBMs requires some a priori skills 100
and an advanced research plan, including an adequate initial design for a clearly 101
stated question, testing the general behavior of the model against empirical data 102
and/or theoretical expectations and finally conducting some simulation 103
experiments in which we systematically evaluate alternative scenarios in order to 104
make some useful predictions. 105

Building an IBM requires software coding, either implicitly or explicitly. 106
Nevertheless, coding is by no means the limiting factor when building an IBM. The 107
main challenge is making explicit the question and designing a sensible and logical 108
procedure to address it. Above all, using IBMs is an excellent way to make explicit 109
our knowledge and assumptions in order to generate new hypotheses and 110
predictions. It is therefore clear that IBMs are most relevant when aiming at complex 111
questions for which other approaches are limited. To be able to do so we need a 112
priori knowledge about how the system might work as well as information to be able 113
to parameterize the model, even if using scenarios with hypothetical 114
parameterizations (DeAngelis and Mooij, 2005; Grimm and Railsback, 2005). 115

 116

11.1.2 When to use an individual-based model 117

The use of IBMs has increased significantly in the last few decades, and so has the 118
diversity of research questions covered (Grimm, 1999). Models are often used to 119
investigate complex questions, such as those having highly discordant spatio-120
temporal scales for different processes and patterns (generally local interactions 121

4

generating data patterns at large scales), feedbacks and conditional parameter 122
values affecting functional responses or strong impacts of spatial environmental 123
heterogeneity on individual traits and responses. In many cases, the use of IBMs 124
links population ecology to other disciplines, such as genetics, landscape ecology, 125
behavioral ecology, ecotoxicology and economics. Typical studies range from 126
population viability analysis of small populations for which demographic 127
stochasticity is important, to management questions including the evaluation of 128
different harvest regimes (Wiegand et al., 1998, Whitman et al., 2004), and 129
questions dealing with population genetics, such as genetic structure or effective 130
population size, and their relationship with demography and population viability 131
(Storz et al., 2002; Bruggeman et al., 2010, Perez-Figueroa et al., 2012). Authors 132
often explore the role that different mechanisms can play at the population level 133
under different environmental conditions, including physiological processes, such 134
as individual energetics, growth and biomass dynamics or their interaction with 135
diseases (Boyles and Willis, 2010; Buckley, 2008; Willis, 2007), as well as behavioral 136
mechanisms, such as the link between individual behavioral responses and their 137
impact on demographic parameters, the role of group living and sociality or spatial 138
ecology and individual movements, including dispersal and how it impacts 139
population dynamics (Goss-Custard et al., 2006; Kramer-Schadt et al., 2004; Rands 140
et al., 2006; Revilla et al., 2004; Revilla and Wiegand, 2008; Stephens et al., 2002; 141
Tablado and Revilla, 2012). Finally, the use of IBMs in complex multi-specific 142
questions, such as predation and community or disease dynamics is also relevant 143
(Carlo and Morales, 2008; Ramsey and Efford, 2010; Rushton et al., 2000; Schmitz, 144
2000; Wilkinson et al., 2004). 145

 146

11.1.3 Criticisms on the use of IBMs: Advantages or disadvantages 147

When first used, IBMs were heavily criticized along four main lines of thought. First, 148
these models were described as too complex and therefore very data-hungry and 149
prone to overfitting and error propagation problems. This critique has been based 150
on a simplifying generalization and on some erroneous analyses (Beissinger and 151
Westphal, 1998; Mooij and DeAngelis, 1999). If properly designed, calibrated and 152
analyzed, IBMs are no more prone to those problems than any other applicable 153
method (see Wiegand et al., 2004b and the discussion and references therein). The 154
generalization on over complexity is quite unfair since it is by definition not part of 155
IBMs, but rather a consequence of addressing complex questions. Additionally, it 156
confuses the definition of complexity used for statistical inference in statistics 157
probability theory, defined by the number of parameters of a statistical model, with 158
structural complexity under algorithmic theory. This leads to an axiomatic 159
application of Occam’s razor, which should be applied to empirically or theoretically 160
supported process descriptions and when those descriptions are similarly 161
supported by data. Only then should the model with fewer parameters be favored. 162
The usefulness of a model is not given by the number of parameters, but rather its 163
ability to address a question. 164

It is often assumed that the lower the number of parameters of a model the more 165
generalizable the results, forgetting that the assumptions are also part of the model, 166
and that to be able to make generalizations to other systems (not to say to make 167

5

predictions) the set of assumptions must be sensible and comparable among 168
systems. Structural realism is an important advantage of IBMs, especially in relation 169
to model assumptions and even if model parameterization is not fully resolved or 170
specified (Wiegand et al., 2004b; Ajelli et al., 2010). For example, the structural 171
complexity of IBMs allows for the direct inclusion of demographic stochasticity with 172
no need to parameterize it. 173

The remaining three criticisms are that IBMs are difficult to analyze, difficult to 174
communicate, and, finally, the results are difficult to generalize in order to make 175
inferences on the functioning of other systems (e.g., Bolker et al., 2003). These points 176
are relevant and represent the main challenge of using IBMs. The poor 177
implementation of some early models, for some of which it appears as if the aim was 178
to build the model itself, plus a poor documentation made the models too obscure 179
and difficult to follow, not to mention replicate (Müller et al., 2014). The only way to 180
minimize those problems consists in using a research program aiming to 181
understand how a complex system works (individual-based ecology sensu Grimm 182
and Railsback, 2005). In doing so we should take advantage of the flexibility of IBMs, 183
including the possibility of linking them to other methods, the capacity to make use 184
of many sources of data with varying quality, including ancillary data, or the capacity 185
to introduce difficult structures, such as covariation between model parameters, in 186
a natural way. Finally, an important advantage of using IBMs is that if properly built, 187
they force us to make explicit all the relevant knowledge on a population, including 188
how different processes interact, and the capacity to generate predictions that are 189
testable in the field. 190

 191

11.2 Building the core model 192

11.2.1 Design phase: The question and the conceptual model 193

The first step in building an IBM is to identify and make explicit the general aim of 194
the model. In the early days of IBMs it was not uncommon to find examples of models 195
that were described with no further aim, consequently generating a lot of criticism. 196
IBMs, as any other model, should be built to address a specific question. The general 197
aim should be developed in the form of specific questions that can be directly linked 198
to a priori predictions as well as data, both empirical and simulated. The theoretical 199
and empirical context must be set, together with the general simplifying 200
assumptions that are made a priori, such as no role for space or evolutionary 201
processes. 202

The second step in the design phase consists in developing a conceptual model in 203
which we summarize the knowledge in relation to the question to be addressed. At 204
this stage it is quite useful to perform an in-depth review of the state of the art of the 205
question, which should be made available to readers, either as part of the final 206
manuscript or as a stand-alone publication. The conceptual model should make 207
explicit the processes at the level of individuals that are known to affect some of 208
their fitness traits (e.g. age mediated survival), the environmental factors 209
modulating them (e.g. higher mortality at low temperatures) and the available 210

6

parameter estimates including their central value, variability and uncertainty. It is 211
also important, especially if we are dealing with a question related to a specific 212
species and population, that we clearly differentiate the information coming from 1) 213
general theory (including empirically derived heuristic patterns), 2) from species 214
with a similar life-history and ecology, 3) from the same species in other populations 215
and 4) from the focal population itself. This distinction will help us later on when 216
defining model uncertainty, parameterizations and the alternative scenarios. 217

From the design phase we should have a shopping list with the working plan and 218
the required pieces, including: 1) the individual traits (both those directly and 219
indirectly linked with fitness); 2) processes and their parameters directly modifying 220
individual traits (including rules and equations); 3) environmental processes and 221
their parameters (indirectly affecting individual traits, their rules and equations); 4) 222
a well-planned scheduling, i.e., how all those processes occur and integrate along the 223
iterations of the model, that is, along the individuals in the population or through 224
time; and, finally, 5) the emergent properties directly linked to the questions at hand 225
(Fig. 11.1). 226

The design phase is critical and our final success will depend on doing a good job at 227
this stage (Fig 11.1). It is also the most difficult part of the entire process, requiring 228
some experience to master. The good news is that there is no single correct way to 229
do it, and that we have a lot of freedom to follow our own preferences and style. 230
Inexperienced researchers should consult relevant papers using IBMs (see section 231
11.1.2) and see how different authors deal with stating and breaking the general aim 232
into questions and predictions and how they explain and justify their conceptual 233
model. Building an IBM is about creating an explicit and dynamic representation of 234
the available knowledge (conceptual model) on the relevant processes and their 235
parameters affecting some variables of interest (emergent properties linked to the 236
questions and predictions). We will have a chance to eventually be successful only if 237
we have a clear question and a good conceptual model. 238

11.2.2 Implementation of the core model 239

The next step is the implementation of the conceptual model in a core model that by 240
iteration of the processes generates some type of dynamics in a single simulation 241
run. Normally, the core model is implemented using a programming language. The 242
best language is the one you already know (or the one mastered by someone who 243
can provide some support). There are so many potential choices that here we can 244
only offer a brief field-guide to help you in deciding (Box 11.1), and make general 245
recommendations that are useful across platforms and languages. There is no single 246
best approach since different systems and languages have both advantages and 247
disadvantages. Running simulations will require a modeling environment that 248
allows for an efficient characterization of individuals and the proper integration 249
across scales. Additionally, it is convenient that the system allows for debugging 250
while coding and while running simulations, which will help in detecting errors and 251
in the evaluation of model consistency (Fig. 11.1). Finally, the selected system 252
should allow for fast simulation runs in order to be time-efficient in the analyses 253
(Box 11.1). 254

11.2.3 Individuals and their traits 255

7

The population is a collection of individuals, but before creating any individual, we 256
have to define their attributes, i.e., describe the traits and properties characterizing 257
them, as defined in our conceptual model. For example, if we need to distinguish 258
their sex, age and reproductive status, we will need to define those three identifiers. 259
Even if two individuals have the same values for all traits, they must be unique and 260
it should be possible to distinguish and find them within the population. Individual 261
traits can be constant throughout their lifetime, for example their genetic makeup, 262
or –depending on the taxa– their sex; or dynamic, if they change during the life of 263
the individual, such as age or reproductive status (Box 11.2). The questions to be 264
addressed with the model will help us in defining the initial population, which needs 265
to be created from scratch at the beginning of a simulation. This population will have 266
a given number of individuals, each with its own traits. As such, we create a 267
population with a specific distribution of, for example, sexes, ages and statuses. 268
Obviously the initial condition imposed by this population will have a profound 269
impact on model dynamics: the dynamics generated by an initial population of 10 or 270
500 individuals will be quite different. Therefore the design and justification of the 271
initial conditions should be thought out carefully and its impact analyzed. 272

11.2.4 Functional relationships 273

Individuals should interact in such a way that their fitness traits are affected. In 274
classical population ecology we broadly distinguish between processes dealing with 275
survival, reproduction and movement. Conceptualizing survival and reproduction 276
as processes removing or adding individuals from the population is straightforward 277
(Box 11.3). Movement is more complicated as it is a process mediating the addition 278
or removal of individuals by migration. We can distinguish three types of processes 279
directly affecting individuals: 1) those adding or 2) removing individuals and 3) 280
those modifying individual traits, including responses to environmental conditions, 281
behavioral responses and automatic modifiers of traits, such as aging (changing the 282
age through time). They may range from very simple rules, for example if the 283
maximum age is reached the individual must die deterministically, to complex sets 284
of conditional equations such as a function calculating the probability of breeding as 285
a function of local density and a set of environmental variables only if age and body 286
condition allow for it. The possibilities are incredibly broad, but fortunately, we have 287
a conceptual model at hand to identify what processes are potentially relevant. 288

Implementing functional relationships is normally done by programming 289
subroutines, which is nothing more than a packed sequence of instructions that is 290
executed whenever we call for it. Subroutines take different names in different 291
languages (e.g., functions, procedures, methods) but they work in a similar way. 292
Functional relationships are implemented by modifying variables (Box 11.4) with 293
mathematical, logical and other types of operators as well as functions (for example, 294
to obtain the absolute value of a floating number or to truncate it). In the case of 295
complex equations we can make use of pre-coded libraries (which are subroutines 296
in themselves) that can simplify the task. A key characteristic of subroutines in IBMs 297
is that many of them need to go through the population, individual by individual, in 298
order to perform the required calculations. For example, in order to apply an annual 299
mortality rate we need to go through all individuals, one by one, and stochastically 300
check if they can survive to the following year (Box 11.3). 301

8

 302

11.2.5 The environment and its relevant properties 303

The environment represents the set of variables that act as direct or indirect 304
modifiers of the traits of individuals. For example, if the probability of reproduction 305
of a female depends on its age, the actual density and the amount of rain in that year 306
with some specific parameters estimated with field data. Age is an individual 307
property with its own dynamics whereas density and rain are external variables (for 308
the focal individual). In this case, we need to calculate and keep track of population 309
size and then calculate density during each simulation (Box 11.4). Note here that 310
density dependence is probably one of the simplest impacts that the environment 311
may have on the traits of each focal individual. The same applies for rain, which, 312
depending on our needs, may be a predefined set of values (for example, a constant 313
included in a one dimensional array of integer values, indexed from the first to the 314
last year of data) or have its own dynamics depending on additional functions. Fixed 315
environmental properties are included in the model as variables (with or without 316
associated variability; Box 11.4); whereas in the case of dynamic environmental 317
properties we need to include the processes describing the dynamics (rules, 318
functional relationships and their parameters) in specific subroutines as we do with 319
other processes. Environmental properties, which are also part of the initial 320
condition, will have to be set up when starting the simulation. 321

11.2.6 Time and space: domains, resolutions, boundary conditions and scheduling 322

A critical element is how time and space are dealt with. Both are defined in all 323
conceptual models, either implicitly or explicitly. In explicit definitions we need to 324
keep track of them, either in continuous or discrete ways. If time and/or space are 325
not explicit we still need to acknowledge them by clarifying the assumptions made 326
on their reference domains. A domain is just the range of allowed values. Even in 327
non-spatial models we have a spatial domain in the form of an assumption. 328
Therefore, the first step is defining the temporal and spatial domains. Time is 329
explicit in most cases (but not all), whereas both spatially implicit and explicit IBMs 330
are common. For example, if we define the temporal domain of our model as 10 331
years (e.g. for a short-term reintroduction evaluation), we know that a simulation 332
can run at most for that amount of time; or, if the spatial domain is 100 x 500 km 333
that is the area in which our population occurs. 334

Within its domain, time can be represented by one or more temporal resolutions as 335
required by the processes affecting individuals and the environment. The study of 336
the interaction between processes at highly discordant temporal resolutions is 337
essential for understanding the dynamics of complex systems (Grimm et al., 2005). 338
In the above example the 10 years can run in steps of one day or one year depending 339
on the relevant processes. For example, in the case of univoltine species, 340
reproduction can occur only once a year and therefore reproduction would require 341
steps of one year. On the other hand, if we need to evaluate the role of the mortality 342
imposed by short-term cold spells, we may think of a finer temporal resolution. Time 343
is normally introduced as a conditional loop in which there is a counter that keeps 344
track of the current time step (see subroutine for population dynamics in Box 11.3). 345
If we have several temporal resolutions we can nest several conditional loops in a 346

9

way that allows accounting for time as a clock does. For example, if we need days for 347
survival and years for reproduction, we will code two nested loops, one counting 348
years and another, within the previous one, counting days. Once the day loop runs 349
for 365 days we start it again and the yearly loop moves to the next year. 350

In spatially explicit models we can proceed from simple to very complex 351
descriptions of space (Box 11.5). Typically, we need explicit space when movement 352
is a relevant process and therefore it needs to be implemented in subroutines, with 353
rules and/or equations describing when, how and where individuals move. This is 354
done by, changing the values of the traits describing the coordinates of individual 355
location. Those subroutines tend to have fine-scale temporal resolutions to allow for 356
individual movement decisions. All the rules and equations should be clearly 357
specified (and justified) in the conceptual model (Nathan et al., 2008). Associated 358
with individual movement decisions is the concept of boundary conditions. What 359
happens if individuals move to the edge of the spatial domain? Individuals can 360
basically do two things, either be reflected back into the domain (as would be the 361
case in a closed population moving within a fenced area, an island or an oversized 362
spatial domain), or emigrate (i.e., leave the domain). If we implement emigration we 363
may need to implement immigration as well. In some cases it is sufficient using a 364
balanced emigration-immigration function by moving individuals back into the 365
domain at the other end of the dimension they left (in a torus-like fashion). In any 366
case, the best answer depends entirely on the system and the question at hand. 367

Finally, a critical concept we must think about carefully is that of scheduling, or how 368
processes having different resolutions are nested and, for those with the same 369
resolution, how they are ordered. Even in simple models, sometimes it is not easy 370
answering questions such as what or who should be first, as is the case for survival 371
and reproduction, in a model with only one temporal resolution (see for example 372
the model in Box 11.3 and think about the effect of calling survival first instead of 373
reproduction). In models with an implicit time, as occurs with some very short-term 374
IBMs dealing with individual decision-making, or within a temporal resolution, we 375
still need to define the order of interaction between individuals, that is, their cueing 376
or implicit timing of inter-individual interactions. Different schedules affect model 377
behavior and results. Again, the conceptual model is critical here as well as the 378
explicit listing of how many temporal and spatial resolutions we have for each of the 379
processes involved (Berec, 2002). Once you have a schedule it also helps plotting a 380
diagram describing it (Figure 2). 381

11.2.7 Single model run, data input, model output 382

The core model can be used to run single simulations. As such, it is not of much use 383
apart from demonstration or educational purposes in regard to our conceptual 384
model. Most compilers allow for a process called debugging, which permits 385
detecting the existence of programming errors, often locating the place where the 386
code is flawed. Therefore, this debugging compilation will probably be the first 387
manner of execution that we face, in the beginning, to our despair, but very much 388
needed to obtain a clean and consistent core model. Nevertheless, debugging does 389
not solve the inconsistencies that we introduced in the conceptual model or in the 390
questions (Fig. 1). 391

10

In order to run the model we need to parameterize it by introducing values to all 392
model parameters (Box 11.6) and defining the initial condition (initial population 393
size and structure and the environmental setting). After running a simulation (or 394
many) we need to obtain some output describing model behavior and predictions 395
(Box 11.6). Remember that in the conceptual model we had identified simulated 396
data directly linked to specific questions and their a priori predictions. IBMs are 397
stochastic models and, therefore, the output variables will yield different results in 398
different simulation runs with the exact same parameterization and initial 399
condition. In order to estimate the probability distributions of each of the output 400
data a number of simulation runs must be repeated with each parameterization. A 401
reasonable rule of the thumb is enough runs to obtain stabilized estimates of the 402
mean and standard deviation of the output variables. 403

11.3 Protocols for model documentation 404

At this stage we have a general aim that breaks into a set of specific questions and 405
their potential responses based on a priori expectations, a conceptual model 406
describing the system and the potentially relevant processes involved (and their 407
parameters), and a description of how those processes drive the interactions 408
between individuals, between those and the environment and the environmental 409
dynamics itself, generating the dynamics of the population. We have implemented 410
the conceptual model into a simulation model in what I have called the core dynamic 411
model. At this stage, it is crucial to document what we did so far before the model 412
gets too complex. During the process of building the model we probably needed to 413
modify some parts and details of the conceptual model to accommodate the explicit 414
way we built it and why we did so (Fig. 1). Once we start analyzing the model, we 415
will probably need to revise both the conceptual and the core dynamic models again. 416
A process of continuous refinement is normal and it is not a problem in itself. 417
Nevertheless, and as complexity grows, we have to document what we have, even if 418
it needs be modified later on. 419

Traditionally model documentation has ranged from simple verbal descriptions to 420
very detailed descriptions and justifications, including pseudocode or even the full 421
code of the model. Model documentation should run together with model building 422
as it forces us to go through a process of thinking about how we are designing things 423
and how all the components integrate. This documentation should include both 424
model justification and a detailed description of its processes. For that reason, the 425
refined version of the conceptual model, after the revision when constructing the 426
model, should be the main part of the documentation. 427

Some general guidelines can help with properly informing about our work. We need 428
to be as clear as possible about the general aim and the specific questions to be 429
addressed, including the a priori predictions and the list of model behaviors and the 430
variables dynamically predicted by the model that will be used in the analyses. If 431
using field or theoretical data to compare with the predictions of your model, be as 432
clear as possible about the methods used and the quality of those data sources. Make 433
explicit all rules, equations and schedules included in each of the processes, with the 434
help of graphs and other schemes if needed (Fig. 2). Use mathematical notation to 435
declare equations and also rules (such as conditional probability or Boolean algebra 436
notation). List model parameters, including constants, in association with the 437

11

submodels they are implicated in, their description and the available estimates (this 438
includes both the variability and the associated uncertainty), explaining and 439
justifying the field and statistical methods used and/or the data sources. Make 440
explicit all scales, domains, resolutions and how they integrate in each of the 441
processes. Explain carefully how stochasticity is dealt with, including parameter 442
sampling, randomization and any other decision that may affect the interpretation 443
of the results (including for example data rounding and truncation). Finally, 444
consider seriously publishing some version of your code, either in the form of 445
annotated pseudocode (Box 11.3), the code of your core model, or all code produced 446
for both the core model and the analyses (separated versions help in understanding 447
what we did). 448

There have been several attempts to make explicit a list of minimum requirements 449
to document IBMs in the form of model documentation protocols (Mooij and 450
Boersma, 1996). The most popular is the Overview, Design concepts and Details 451
(ODD) protocol presented by Grimm et al., (2006), which has been updated and 452
expanded by Grimm et al., (2010) and by Topping et al., (2010) who created the 453
ODdox version for C++ code annotation and documentation. The result is a set of 454
documents providing a heavily annotated and hyperlinked version of the ODD 455
protocol linking model description to the source code. The ODD protocol or any 456
other alternative can be used as a guideline to cross-check that we considered and 457
described properly all the components of a model. The ODD protocol is a good way 458
to organize and present information, but other alternatives maybe be more 459
consistent with the aims and level of complexity of your model (Müller et al., 2014). 460

11.3.1. The Overview, Design concepts and Details (ODD) protocol 461

The ODD aims to offer a standard that provides an ordered sequence of information 462
that allows readers to follow the logic and details of any IBM (Grimm et al., 2006; 463
2010). It first starts with general information in the Overview section (Table 1), 464
described by three elements: the purpose of the model, the state variables and scales 465
and finally a short overview of the processes and the scheduling. The next section, 466
the design concepts, describes the strategic design of the model. The current version 467
includes a list of eleven elements, ranging from emergence and adaptation to 468
collectives or stochasticity. The list of elements is a bit arbitrary and it is not in a 469
particularly relevant order. Go through them and build an ad hoc list by selecting the 470
ones relevant for you. The final section goes into an explanation of the model in 471
detail, including the initialization, the input data and finally, a detailed description 472
of all processes. All sections and subsections of the ODD are articulated as groups of 473
questions (Table 1). The final result is a document in which relevant details of the 474
model are described. Nevertheless, following the guidelines of the ODD does not 475
ensure that the explanations make sense, especially if your conceptual model is not 476
consistent and well thought out. In the process of building your conceptual model 477
you can use the ODD questions to cross-check what you might be skipping. 478

Grimm et al., (2010) assume that a single protocol can suit all potential model 479
implementations and that the ODD protocol should be strictly followed. However, 480
the question of whether a single protocol can be applied to a variety of 481
implementations built to address very different questions remains unresolved. My 482
view is a bit more unorthodox because depending on the aims, we can find 483

12

alternative ways to efficiently communicate our work. For example, in my view the 484
clarity of the documentation of a model improves by clearly separating what belongs 485
to the description of the core model from the description of the analyses. This 486
includes different model parameterizations and initial conditions that are typically 487
associated with specific analyses (which are normally several). In doing so, it is 488
easier to understand the different steps, especially if the parameterization and 489
initial conditions differ between analyses. Additionally, separating those two parts 490
simplifies the distinction between what we consider as supported knowledge and 491
the part that we will investigate in detail both in relation to model structure and 492
parameterization. 493

11.4 Model analysis and inference 494

Analyzing a model is about understanding its behavior and its emergent dynamic 495
properties under different conditions. The analysis of complex models is not a 496
simple task. At this stage, the ecologist will use all her/his knowledge on 497
experimental design and on statistical analyses, including the methods explained in 498
this book. There is no single best way to analyze an IBM, with different approaches 499
ideally yielding similar conclusions. Nevertheless, I offer some general guidelines to 500
simplify the challenge. It is often difficult to distinguish between the phases of model 501
building and model analysis because during the analyses we may be forced to 502
redefine once again the initial conceptual model and the code, in another iteration 503
of the modelling cycle (Fig 1; Grimm and Railsback, 2005). Normally we will follow 504
a step by step program of analysis. I distinguish between four main steps. First, we 505
need to go through a process of model debugging and consistency checking, 506
followed by an evaluation of the consistency of model structure and a sensitivity 507
analysis. Next come the steps of model selection, validation and calibration. Last, you 508
should try to answer the questions that motivated the model within the inference 509
constraints imposed by the previous results (Fig. 4). 510

11.4.1 Model debugging and checking the consistency of model behavior 511

Before going into your questions of interest, you should perform a thorough 512
evaluation of model performance to detect errors arising from model design or 513
implementation and determine if the behavior of the model makes sense. In this a 514
priori checking you will detect many small problematic details and bugs that once 515
removed will improve model consistency, saving a lot of time later on. Note that 516
while writing the code of your model you were already debugging it at compilation 517
time: any error appearing during compilation should have been corrected already 518
(Box 11.4). Now we search for errors during execution time. The model should be 519
able to run simulations with no errors during a single simulation run using a 520
standard parameterization (the mean value and variability for all parameter 521
estimates). 522

The next step consists of forcing model behavior with different combinations of 523
parameters set at extreme values (for example, very low or high survival rates). 524
Testing boundary conditions will force working with many zeros and with large 525
numbers (including many individuals), thus making errors to appear. It is a good 526
idea to repeat this step by step, going through the different processes before making 527
overall extreme parameterizations of the model. Tests may generate problems by 528

13

making forbidden or undefined calculations, such as floating point divisions by zero 529
and other exceptions that the code does not handle properly. Many of the errors will 530
be associated with exception handling, which depending on the language and 531
compiler will be easy to solve. The following most important sources of errors will 532
be associated with logical failures in scheduling and the way we introduce 533
stochasticity into parameter values. 534

Simultaneous to model debugging during execution, it is important to look for 535
biologically implausible behaviors, especially when working at extreme 536
parameterizations. Before concluding that an interesting or unexpected behavior is 537
a new finding, we must consider the possibility that it is associated with something 538
incorrect in model specification or coding. The dynamics of the model should be 539
consistent with the general expectations of the conceptual model. It is a good idea 540
to use graphical output to cross-check the relevant output in run time, as well as 541
saving simulated data together with parameters and tracking other data not directly 542
related with the model aims and emergent properties, such as realized reproductive 543
and mortality rates. All this information will serve as a log file, helping to determine 544
whether an unexpected model behavior is due to a problem with design or 545
programing, or if it is a new emergent result. Be sure to update the documentation 546
of the model to describe the changes made in the conceptual or core models. 547

11.4.2 Model structural uncertainty and sensitivity analyses 548

The next step in analyzing an IBM should deal with setting the context in which to 549
interpret the results: what are the limits for the inference? This step has two 550
complementary sides, one related to model structural consistency, as defined by the 551
processes and how they are integrated, and the other to the parameterization of 552
those processes (Fig. 4). Thinking in the structural uncertainty of a model consists 553
of specifying alternative definitions of the processes that we have implemented, 554
such as using additive or multiplicative processes or different functions such as 555
power or exponential laws. It is important when we do not have a good empirical 556
description or theoretical justification for the choices. For example, imagine that 557
based on empirical data we implemented a function in which survival is affected by 558
temperature, but there is no data on which function is best and how it needs to be 559
integrated with other factors such as density. If the main reason to build your model 560
is addressing questions regarding the impact of temperature variation on some 561
relevant population traits, it will be a good idea to think of alternative ways to 562
implement the processes, such as an additive or multiplicative interaction with 563
density. The idea is to create two or more alternative model structures that will be 564
subject to sensitivity analyses. Further analyses will be repeated for each of the 565
alternatives and the results compared for consistency under a model selection 566
framework. Sensitivity analyses will help to gain confidence on how the 567
specification of the model may affect inference. Structural uncertainty should be 568
evaluated for processes that have some level of uncertainty and for which we expect, 569
a priori, a relevant role on model behavior (Fig. 4). 570

In sensitivity analyses, we quantify how changes in the values of model parameters 571
affect the value of the key output variables. This is achieved by repeatedly running 572
the model with different parameterizations and measuring how the relevant 573
outcomes respond. Depending on the aim of the analyses, we can differentiate 574

14

between two different types: sensitivity analysis sensu stricto and uncertainty 575
analysis. In sensitivity analyses we define the range of values to be explored using 576
biologically realistic values for each model parameter that we want to explore. For 577
example, the boundary conditions might set the parameter hypervolume; using 578
parameters between the minimum and maximum values reported in the literature. 579
In this way, we can explore the potential behaviors of the system under plausible 580
conditions. Conversely, in uncertainty analysis we sample only within the existing 581
uncertainty around each of the parameter estimates to determine the variability of 582
the response of the model in relation to the available information. Typically for some 583
parameters we do not have accurate estimates from the literature or from empirical 584
data, for instance, the probabilistic parameters used in stochastic rules, and this 585
uncertainty needs to be taken into account to avoid over-interpreting the results. 586

Sensitivity analysis is generally considered a key component of the quality 587
evaluation of any model, for understanding the model itself and providing the 588
context in which the rest of the results will be interpreted. For example, if the model 589
aims to evaluate a conceptual hypothesis then the actual parameterization is not so 590
relevant, whereas model behavior in a range of plausible conditions is. On the other 591
hand, uncertainty analysis is particularly useful in indicating which parameters are 592
candidates for additional research to narrow the degree of uncertainty in model 593
results, and is a key component of models built for making predictions based on 594
empirically estimated parameters. Something that is often overlooked in sensitivity 595
analyses is the possibility of including how parameters interact by including 596
covariation in parameter values. A final recommendation is avoiding sensitivity 597
analyses using the central estimate of parameter values and an arbitrary small 598
amount of variation (typically 5 or 10%) up and down. The range of values to be 599
used should be well-justified. 600

In sensitivity or uncertainty analyses two general approaches are used depending 601
on whether all parameters are considered simultaneously or not. In local and one-602
at-a-time analyses we sample the range of values of just one parameter while 603
keeping all the others constant at their central estimate and then measuring to what 604
extent the output of the model is affected. One-at-a-time approaches perform poorly 605
when dealing with complex models such as IBMs and should in general be avoided 606
(Saltelli and Annoni, 2010; but see Beaudouin et al.,. 2008). In global or multivariate 607
sensitivity analyses we explore all the parameters simultaneously, repeatedly 608
sampling the n-dimensional parameter hypervolume. 609

The sensitivity analysis will require a substantial amount of coding only for this 610
purpose. Therefore, making a specific version of the model for this is a good idea. By 611
coding loops, one for each parameter and with as many steps as values needed for 612
each of them, you can run a global analysis at once even if you have a lot of 613
parameters to sample. There are several ways to sample the parameter 614
hypervolume, from simply randomly choosing parameter values (very inefficient) 615
to a complete factorial sampling design, which may be reasonable for a reduced 616
number of parameters. These approaches become computationally challenging for 617
relatively small models. With just 10 parameters with 5 values each running with 618
100 simulation replicates to estimate the variability of the output requires 107 619
simulation runs. In these cases, we can use a more efficient Latin hypercube 620
sampling (Iman and Helton, 2006). Briefly, this technique is a stratified sampling 621

15

method commonly used to reduce the number of simulation runs necessary for 622
sampling the parameter hypervolume. Each parameter is sampled using an even 623
sampling method and then randomly combined sets containing all parameters are 624
used to run the model. For each parameter the range of possible values is divided 625
into non-overlapping intervals of equal probability size (Box 11.4). One value from 626
each interval is chosen at random and this process is repeated for each parameter 627
until we obtain a parameterization set. The key is that for every parameter each 628
interval must be sampled only once until all intervals of all parameters have been 629
used once. Then the process starts again. If the model is complex, it may be 630
necessary to use a refined version of the Latin hypercube sampling that reduces the 631
dimensionality of the problem by carefully analyzing some relevant processes 632
before going into a simplified global analysis. 633

In the end, we obtain a dataset including the parameter values used and one or more 634
relevant model predictions directly related with the questions (such as overall 635
population size, density, growth rates, extinction probability, mean time to 636
extinction or sex ratio). All this information needs to be summarized in order to 637
obtain a picture of the differential role of the parameters and their associated 638
uncertainty. The most basic way to do this is simply by using a partial rank 639
correlation analysis (Segovia-Juarez et al., 2004). A more inclusive approach is to 640
run generalized regressions between model predictions (the average of the 641
replicates for each parameterization) as dependent variable and model parameters 642
as independent predictors (McCarthy et al.,. 1995). The resulting equations 643
approximate the functions that relate the parameters of the simulation model to 644
predictions in a simple way, while the standardized coefficients of the regression 645
can be used to describe the sensitivity of model predictions to each of the input 646
parameters (Revilla et al., 2004; Revilla and Wiegand 2008). The generalized 647
version of this approach is referred to as Gaussian process analysis in which the 648
behavior of the simulation model in regard to each of its predictions is approximated 649
by a Gaussian statistical model in which the predictors are the parameters of the 650
simulation model (Dancik et al., 2010). Remember that you need to report effect 651
sizes and confidence intervals to give readers an idea of the magnitude and relative 652
importance of each parameter effect. P values do not make sense here since the input 653
parameters are known to generate the output, while the unlimited power provided 654
by large simulated sample sizes makes their interpretation irrelevant. 655

Finally, we need to warn you against using sensitivity (or elasticity) analyses to 656
make strong inferences about the actual factors driving the dynamics of a real 657
population. These analyses do not necessarily tell you much about which 658
parameters should be managed in the field. It specifies what each of the parameters 659
does and the strength of the effect, so avoid making any definitive conclusion on 660
what might be going on unless you have some empirical indication that the 661
parameters identified as important in the sensitivity analyses are the ones that need 662
to be managed. For example, the fact that adult survival is the most sensitive (or 663
elastic) parameter in your model does not guaranty that the population is declining 664
due to low adult survival; it could be entirely due to a lack of recruitment. 665

11.4.3 Model selection, validation and calibration 666

16

A bit trickier is comparing the outcome or outcomes of the model against a specific 667
dataset. The comparison is usually made for different reasons, such as model 668
selection, model validation and model calibration (Fig. 4, Table 2). If we are dealing 669
with uncertainty in model structure, we will have alternative process specifications 670
which can be assessed in their capacity to reproduce the observed data. In the case 671
of validation, we typically have estimates of model parameters with their variability 672
and uncertainty, which are then validated by evaluating their capacity to replicate 673
an empirical dataset or some empirically observed behaviors, setting a credibility 674
standard for that model structure, parameterization and question (Fig. 4). 675
Calibration is a kind of model parameterization in which we estimate parameters 676
from observed field data on model predictions by filtering out the parameterizations 677
that do not match the data, by Gaussian process approximation or any other 678
likelihood approximation (Hartig et al., 2011). It is important to note that we leave 679
model parameterization for the analysis-inference and not for model building since 680
this step is very important in understanding how the model behaves. This is due to 681
the fact that very often parameterization is first about defining and then reducing 682
the dimensionality of the model before making any strong inference such as 683
management recommendations. Model parameterization by calibration (or inverse 684
modelling) may use no a priori information on the actual parameters, or may use 685
the available information as priors under a Bayesian calibration framework (Hartig 686
et al., 2011). In mechanistic modelling, we assume that we can use information about 687
the processes and how they integrate from other populations, whereas the 688
parameters are just different realizations that we may observe. In model calibration, 689
we can simultaneously perform the parameterization and the uncertainty analysis. 690

This step requires the systematic comparison of empirical and simulated data in 691
order to decide which of the tested parameterization sets or model structures 692
reproduce the empirical data in a reasonable way by calculating the probability of 693
reproducing the field data with a given model structure and parameterization. 694
Typically, we run simulations until we obtain a distribution of the frequencies of the 695
simulated observations that the model structure and parameterization can generate 696
and from them calculate the probability of observing the field values. The 697
comparison between the observed and simulated data can be straightforward, as 698
the difference or the sum of squared distances between the observed values and 699
those obtained from the simulated data, or more efficient if we make the comparison 700
only once against the summary statistics of the simulated frequency distribution 701
(mean and variance). Conceptually, we can generalize all the alternative approaches 702
as a kind of point-wise likelihood approximation of the goodness of fit of our model 703
to the data (Hartig et al., 2011). As such, we need to calculate the likelihood of 704
observing the empirical data for each model structure and parameterization. The 705
final goal is finding the structure and parameterization that maximizes that 706
likelihood, thus obtaining a parameterization of the model with field data on model 707
predictions, obtaining an estimate of the uncertainty (for example, by knowing how 708
many alternative parameterizations match our threshold of fit) or simply helping us 709
to select the model structure that is best supported by the available data (Fig. 4). 710
Hartig et al., (2011) review the different methods under a useful likelihood-based 711
inference conceptual framework. The methods range from those that explicitly 712
approximate the likelihood, such as approximate Bayesian computation, simulated 713
(synthetic) pseudo-likelihoods or indirect inference, to those that allow calibrating 714

17

the model without explicitly approximating the likelihood, such as pattern-oriented 715
modelling or informal likelihoods (Beumont, 2010; Hartig et al., 2011). The beauty 716
of these methods is that the structural realism in the definition of processes at the 717
right scales allows for inverse parameter estimation (Hartig et al., 2011; 2014; 718
Wood, 2010). 719

One of the classic ways to calculate the likelihood of obtaining the observed data 720
given a model structure and parameterization makes use of central limit theorem, 721
which allows us to calculate the probability of obtaining an empirical measurement 722
from the summary statistics of the distribution of model outcomes for a given 723
parameterization, if the simulated distribution can be approximated with a normal 724
distribution (a parametric likelihood approximation, following the notation of 725
Hartig et al., 2011). For each model prediction we calculate a match-score, for 726
example, a Z score using the mean and the standard deviation of the simulated 727
replicates (Revilla et al., 2004); while by setting different threshold probabilities for 728
acceptance we can simultaneously evaluate multiple model predictions using a 729
multicriteria approach, such as Pareto optimality assessment (Reynolds and Ford, 730
1999). Alternatively, we can use a Bayesian framework to calculate the posterior 731
distribution and proceed in a similar manner (Beaumont, 2010; Hartig et al., 2014). 732
If the simulated frequency distribution generated by the model does not conform to 733
a normal distribution (this typically occurs when using highly aggregated data 734
which may generate multimodal distributions), then we may instead use a kernel 735
density estimator to obtain a non-parametric estimation of the probability density 736
function of the simulated distribution and subsequently calculate the probability of 737
observing the empirical data from it (Tian et al., 2007). There are cases in which the 738
variability in the observed data is high due to measurement error but the 739
predictions of the model for the same type of data shows lower variability. In these 740
cases it is advisable adding a tractable error term (parametric or non-parametric) 741
on the side of the observed data to account for noise (Hartig et al., 2011). If we are 742
evaluating alternative model structures, and therefore, we cannot be sure of the 743
origin of the mismatch between observed and simulated data (structure, 744
parameterization or stochasticity), it is advisable to use simpler measures of 745
mismatch, such as the sum of squared distances between the observed and 746
simulated data (informal likelihoods; Hartig et al., 2011) or some kind of ad hoc 747
rejection filtering under the pattern-oriented approach (Grimm et al., 2005). 748

Pattern-oriented modeling, also termed rejection or performance filtering (Grimm 749
et al., 2005; Webb et al., 2010; Hartig et al., 2011), can be applied to models of 750
dynamical systems. It is probably the most liberal approach in regard to model 751
selection, validation and calibration, because it can also be used when the data to be 752
adjusted (both the empirical and/or the simulated data) have complex distributions 753
such as multimodal or multidimensional, or when the quality of the empirical data 754
is poor or simply unknown. The method consists of defining criteria that allow 755
classifying whether model structures or parameterizations match the observed data 756
within a given explicit threshold, instead of calculating the actual likelihood of 757
obtaining the observed value or a close enough value. The criteria used to define the 758
thresholds can be diverse or even ad hoc, and may include some of the indexes of 759
adjustment discussed above (for example, a mean squared difference or a Z score 760
threshold). Additionally, we can use the error of the field data estimates to define 761
the criteria. It allows using multiple ancillary data which in isolation do not contain 762

18

much information, but that in combination can provide a robust approximation to 763
constrain model behavior within the limits of the available information (Wiegand et 764
al., 2004b). 765

Potentially, the number of variables that may be included in the empirical dataset to 766
be directly used in the comparison with simulated output can be large. Often we 767
aggregate the available information in some way to obtain a simplified set of data 768
that can be compared with the simulated output. These variables are referred to in 769
the literature as patterns, state variables, output variables or simply summary 770
statistics (Hartig et al., 2011). The difficulty lies in deciding which of the many 771
alternatives are statistically sufficient given the purpose of the model. The statistics 772
need to convey information on the relevant properties of model dynamics. A good 773
recommendation is to choose variables that operate at different spatial or temporal 774
scales and hierarchical levels, including variables describing stationary and non-775
stationary dynamics (Grimm et al., 2005; Wiegand et al., 2004b; Wood, 2010). 776
Nevertheless, the question behind your model should be the key when you to decide 777
which data is relevant, obviously, within the limits imposed by the available 778
empirical information. 779

All the methods discussed above require searching the potential parameter space in 780
order to find the model structure or parameterizations best supported by data using 781
some kind of numerical approximation (Bolker, 2008). In models with a reduced 782
dimensionality, we can use a Latin hypercube sampling strategy. In more complex 783
models, say above 20 parameters, depending on the availability of computing 784
power, the programming language and how efficiently the model was coded, we will 785
need a more efficient sampling strategy, such as Markov chain Monte Carlo 786
strategies, including the Metropolis-Hastings and the Gibbs sampling algorithms, 787
which start with an initial parameterization obtained from the parameter space, 788
from which we generate a new parameterization by randomly moving a small 789
amount within the parameter space. Then the likelihood, or similar, of the two 790
consecutive parameterizations is compared, retaining the best one from which a 791
new parameterization is obtained. There are lots of variants aiming to increase the 792
speed, for example by reducing the correlation between consecutive 793
parameterizations, and to avoid getting stacked in local likelihood maxima by going 794
downhill with some probability. Another alternative is using sequential Monte Carlo 795
approaches in which, starting with a set of parameterizations obtained from the 796
whole parameter space, we calculate the point-wise likelihood and then weight each 797
of them, for example by their normalized importance weight, according to their 798
estimates. From this initial set we obtain a new set of parameterizations with 799
probabilities according to their weights and repeat the process until some 800
convergence criteria is met, such as that all parameterizations within the set are 801
within a given likelihood threshold. Finally, we can consider using a numerical 802
optimization algorithm when dealing with multiple data to be fitted under a pattern-803
oriented approach (Table 2). Hartig et al., (2011) provide pseudocode algorithms 804
for some of these numerical sampling methods. Applying these methods is most 805
efficiently done by programming the routines within the coding environment. The 806
methods in themselves are not complicated (though the specific jargon is) but 807
require extensive coding. Remember making a specific version of the model for the 808
purpose of validation and calibration. A potentially less efficient alternative is 809

19

generating the simulated datasets and then using some of the algorithm 810
implementations available within R. 811

11.4.4 Answering your questions 812

At this stage, and after all the work done, we should have a clear idea of the questions 813
to answer. The potential uses of IBMs are broad and flexible, as occurs with other 814
stochastic simulation models, making difficult to summarize their uses (see 815
examples given in 16.1.2). The first and most basic use consists of reviewing and 816
integrating the available knowledge on a system. This is basically done by building 817
the conceptual model and its implementation in a core model plus the sensitivity 818
analysis over the biologically plausible parameter space and a validation of the 819
model with independent data. We must give all the available information, making 820
clear what is supported by knowledge and data and what are the assumptions and 821
hypotheses which should be investigated further. From this initial step, the 822
following typical use of IBMs consists of gaining new knowledge on how a system 823
usually works, often evaluating the predictions of theoretical models and empirical 824
generalizations for population regulation, movement, density dependence or 825
interspecific interactions such as predation or diseases. Last, practical applications 826
represent a broad field of use, including population viability analyses, the evaluation 827
of alternative management scenarios for conservation, population control or 828
exploitation, the evaluation of strategies to control diseases or measuring the impact 829
of infrastructures on interpopulation connectivities, just to mention a few. 830

All these uses have in common the description of model behavior under different 831
scenarios. A scenario is defined by a model structure, an initial condition and a 832
parameterization, which also includes the space definitions used in spatially explicit 833
models, normally as maps. For the scenario we obtain frequency distributions of the 834
relevant model outcomes by running multiple stochastic simulations. The simplest 835
approach is just a qualitative or quantitative description of those outcomes, for 836
example, by plotting the results in figures. It is much more common that we need to 837
compare the results of one scenario against other scenarios, empirical data or 838
theoretical expectations in a qualitative and/or quantitative way, as discussed in the 839
previous section. Comparing the output of the model for alternative scenarios is 840
more or less straightforward, especially if what we need is the relative evaluation 841
against a desired standard. For example, we may need to evaluate alternative 842
hunting strategies to estimate maximum yield, to reduce interannual variability in 843
population size, or to minimize extinction risk. We can also use statistical 844
descriptions to compare the distributions of outcomes for the different scenarios. 845
The comparison of multiple scenarios, such as management alternatives, needs to 846
be carefully thought out under the standard framework of experimental design (the 847
virtual ecologist approach; Zurell et al., 2010). 848

Finally, one important issue to consider when designing the experiments is the 849
dependence of model behavior on both its current and past states (model 850
hysteresis). The initial conditions or a perturbation often impose a transient state 851
phase after which the system may reach a steady state with stationary stochastic 852
dynamics, which occurs when the dynamic properties of the model do not change 853
over time, with the frequency distributions of model outcomes remaining stable. 854
Depending on the aims, we may need to focus on the non-stationary dynamics, for 855

20

example, when studying the impact of an event or perturbation, such as the success 856
rate of different reintroduction scenarios varying in the number of animals released 857
(Kramer-Schadt et al., 2005) or a PVA affected by the initial conditions imposed by 858
an empirical estimate of population size and structure (Wiegand et al., 1998). We 859
can also focus on the steady state phase, as we do when calculating the intrinsic 860
mean time to extinction in PVA (Grimm and Wissel, 2004), or on both, transient and 861
steady phases, for example, when investigating the impact of different management 862
activities starting with an observed initial population size (Wiegand et al., 2004a). 863

 864

11.5 Final thoughts 865

This chapter is a bit different from the others. More than discussing a specific 866
method with a lot of examples, it deals with a research approach that can be 867
implemented in many alternative ways to address a potentially very broad range of 868
questions. As such, it borrows methods from many disciplines, including not only 869
ecology, but also statistics, complex systems and algorithmic theories and software 870
engineering. I did not intend to present a thorough review of the literature in regard 871
to examples of IBM implementations and applications. Instead, I aimed to provide 872
an overview of the whole process, from the beginning to the end of the research 873
program, focusing on those parts that might be more challenging for newcomers and 874
hopefully providing some useful guidelines. Using IBMs is by no means easy. The 875
challenge remains in having a good conceptual model and very clear questions early 876
on. Analyzing the model requires some experience in order not to be overwhelmed 877
or lost in irrelevant detail. As with using any other approach that relies on 878
programming, the learning curve may be steep, but it should lead somewhere, and 879
knowing where to go is on the side of the user. Remember that, by itself, building a 880
model is not the question to answer. 881

I provide some toy models in the online materials. They are built merely to illustrate 882
one of the many different ways you may choose to start coding an IBM. This should 883
help you to feel more comfortable with how IBMs are built. Those examples are not 884
core models, just out-of-the-box toy models for you to play with, modify, corrupt, 885
modify again and in this manner learn a bit more about the logic behind this research 886
approach. Then, with the help of this chapter and the methods presented in the rest 887
of the book, you should be able to address your research questions. 888

 889

References 890

Ajelli M, Gonçalves B, Balcan D, et al. (2010) Comparing large-scale computational 891
approaches to epidemic modeling: agent-based versus structured metapopulation 892
models. BMC Infectious Diseases 10(1), 190. 893

Beaudouin, R, Monod G, Ginot V (2008) Selecting parameters for calibration via 894
sensitivity analysis: An individual-based model of mosquitofish population 895
dynamics. Ecological Modelling 218, 29-48. 896

21

Beaumont MA (2010) Approximate bayesian computation in evolution and ecology. 897
Annual Review of Ecology, Evolution and Systematics 41, 379–406. 898

Beissinger SR, Westphal MI (1998). On the use of demographic models of population 899
viability in endangered species management. Journal of Wildlife Management 16, 900
821–841. 901

Berec L (2002) Techniques of spatially explicit individual-based models: 902
construction, simulation, and mean-field analysis. Ecological Modelling 150, 55-81. 903

Bolker B (2008) Ecological models and data in R. Princeton University Press, 904
Princeton. 905

Bolker B, Holyoak M, Křivan V, et al. (2003) Connecting theoretical and empirical 906
studies of trait-mediated interactions. Ecology 84, 1101-1114. 907

Boyles JG, Willis CKR (2010) Could localized warm areas inside cold caves reduce 908
mortality of hibernating bats affected by white-nose syndrome? Frontiers in Ecology 909
and the Environment 8, 92-98. 910

Bruggeman D, Wiegand T, Fernandez N (2010) The relative effects of habitat loss 911
and fragmentation on population genetic variation in the red-cockaded woodpecker 912
(Picoides borealis). Molecular Ecology 19: 3679-3691. 913

Buckley LB (2008) Linking traits to energetics and population dynamics to predict 914
lizard ranges in changing environments. The American Naturalist 171, E1-E19. 915

Carlo TA, Morales JM (2008) Inequalities in fruit-removal and seed dispersal: 916
consequences of bird behaviour, neighbourhood density and landscape aggregation. 917
Journal of Ecology 96, 609–618. 918

Dancik GM, Jones DE, Dorman KS (2010) Parameter estimation and sensitivity 919
analysis in an agent-based model of Leishmania major infection. Journal of 920
Theoretical Biology 262, 398–412. 921

DeAngelis DL, Mooij WM (2005) Individual-based modeling of ecological and 922
evolutionary processes. Annual Review of Ecology Evolution and Systematics 36, 923
147–68. 924

Doak DF, Morris WF (2010) Demographic compensation and tipping points in 925
climate-induced range shifts. Nature 467, 959-962. 926

Gilbert N (2008) Agent-based models. Sage, No. 153. 927

Goss-Custard J, Burton N, Clark N, et al. (2006) Test of a behavior-based individual-928
based model: Response of shorebird mortality to habitat loss. Ecological 929
Applications 16, 2215-2222. 930

Grignard A, Taillandier P, Gaudou B, et al. (2013) GAMA 1.6: Advancing the Art of 931
Complex Agent-Based Modeling and Simulation. The 16th International Conference 932
on Principles and Practices in Multi-Agent Systems (PRIMA) 8291, 242-258. 933

22

Grimm V (1999) Ten years of individual-based modelling in ecology: what have we 934
learned and what could we learn in the future? Ecological Modelling 115, 129-148. 935

Grimm V, Railsback SF (2005) Individual-based Modeling and Ecology. Princeton 936
Series in Theoretical and Computational Biology, Princeton. 937

Grimm V, Railsback SF (2006) Agent-Based Models in Ecology: Patterns and 938
Alternative Theories of Adaptive Behaviour. In: Agent-based Computational 939
Modelling, Contributions to Economics. Pp: 139-152. 940

Grimm V, Revilla E, Berger U, et al. (2005) Pattern-oriented Modeling of Agent-based 941
Complex Systems: Lessons from Ecology. Science 310, 987-991. 942

Grimm V, Berger U, DeAngelis DL, et al. (2010) The ODD protocol: A review and first 943
update. Ecological Modelling 221, 2760-2768. 944

Grimm V, Berger U, Bastiansen F, et al. (2006) A standard protocol for describing 945
individual-based and agent-based models. Ecological Modelling 198, 115-126. 946

Grimm V, Wissel C (2004) The intrinsic mean time to extinction: a unifying approach 947
to analyzing persistence and viability of populations. Oikos 105, 501-511. 948

Hartig F, Calabrese JM, Reineking B, et al. (2011) Statistical inference for stochastic 949
simulation models – theory and application. Ecology Letters 14, 816–827. 950

Hartig F, Dislich C, Wiegand T, et al. (2014) Technical Note: Approximate Bayesian 951
parameterization of a process-based tropical forest model. Biogeosciences 11, 1261-952
1272. 953

Iman RL, Helton JC (2006) An Investigation of Uncertainty and Sensitivity Analysis 954
Techniques for Computer Models. Risk Analysis 8, 71-90. 955

Kramer-Schadt S, Revilla E, Wiegand T (2005) Lynx reintroductions in fragmented 956
landscapes of Germany: projects with a future or misunderstood wildlife 957
conservation? Biological Conservation 125, 169-182 958

Kramer-Schadt S, Revilla E, Wiegand T, et al. (2004) Fragmented landscapes, road 959
mortality and patch connectivity: modelling influences on the dispersal of Eurasian 960
lynx. Journal of Applied Ecology 41, 711-723. 961

Kuparinen A, Merila J (2007) Detecting and managing fisheries-induced evolution. 962
Trends in Ecology and Evolution 22, 652–659. 963

Letcher BH, Priddy JA, Walters JR, et al. (1998) An individual-based, spatially-964
explicit simulation model of the population dynamics of the endangered red-965
cockaded woodpecker, Picoides borealis. Biological Conservation 86, 1-14. 966

Liu J, Dunning Jr JB, Pulliam HR (1995) Potential Effects of a Forest Management 967
Plan on Bachman's Sparrows (Aimophila aestivalis): Linking a Spatially Explicit 968
Model with GIS. Conservation Biology 9, 62-75. 969

23

Luke S, Cioffi-Revilla C, Panait L, et al. (2005) MASON: A Multi-Agent Simulation 970
Environment. Simulation: Transactions of the society for Modeling and Simulation 971
International 82, 517-527. 972

Macal CM, North MJ (2009) Agent-based modelling and simulation. In: Proceedings 973
of the 2009 Winter Simulation Conference. Eds.: M. D. Rossetti, R. R. Hill, B. Johansson, 974
A. Dunkin and R. G. Ingalls. Pp: 86-98. 975

Macal CM, North MJ (2010) Tutorial on agent-based modelling and simulation. 976
Journal of Simulation 4, 151-162. 977

McCarthy MA, Burgman MA, Ferson S (1995) Sensitivity analyses for models of 978
population viability. Biological Conservation 73, 93–100. 979

Mooij WM, Boersma M (1996) An object-oriented simulation framework for 980
individual-based simulations (OSIRIS): Daphnia population dynamics as an 981
example. Ecological Modelling 93, 139–53 982

Mooij WM, DeAngelis DL (1999) Error propagation in spatially explicit population 983
models: a reassessment. Conservation Biology 13, 930–933. 984

Müller B, Balbi S, Buchmann CM, et al. (2014) Standardised and transparent model 985
descriptions for agent-based models – current status and ways ahead. 986
Environmental Modelling & Software 55, 156-163. 987

Nathan R, Getz WM, Revilla E, et al. (2008) A Movement Ecology Paradigm for 988
Unifying Organismal Movement Research. Proceedings of the National Academy of 989
Sciences USA 105, 19052-19059. 990

Perez-Figueroa A, Wallen R, Antao T, et al. (2012) Conserving genomic variability in 991
large mammals: Effect of population fluctuations and variance in male reproductive 992
success on variability in Yellowstone bison. Biological Conservation 150, 159-166. 993

Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: 994
Review and development recommendations. Simulation 82, 609-623. 995

Ramsey DSL, Efford MG (2010) Management of bovine tuberculosis in brushtail 996
possums in New Zealand: predictions from a spatially explicit, individual-based 997
model. Journal of Applied Ecology 47, 911-919. 998

Rands SA, Pettifor RA, Rowcliffe JM, et al. (2006) Social foraging and dominance 999
relationships: the effects of socially mediated interference. Behavioral Ecology and 1000
Sociobiology 60, 572-581. 1001

Revilla E, Wiegand T (2008). Individual movement behavior, matrix heterogeneity, 1002
and the dynamics of spatially structured populations. Proceedings of the National 1003
Academy of Sciences USA 105, 19120-19125. 1004

Revilla E, Wiegand T, Palomares F, et al. (2004) Effects of matrix heterogeneity on 1005
animal dispersal: From individual behavior to metapopulation-level parameters. 1006
The American Naturalist 164, E130-E153. 1007

24

Reynolds JH, Ford D (1999) Multi-criteria assessment of ecological process models. 1008
Ecology 80, 538-553. 1009

Rushton SP, Lurz PWW, Gurnell J, et al. (2000) Modelling the spatial dynamics of 1010
parapoxvirus disease in red and grey squirrels: a possible cause of the decline in the 1011
red squirrel in the UK? Journal of Applied Ecology 37: 997-1012. 1012

Saltelli A, Annoni P (2010) How to avoid a perfunctory sensitivity analysis. 1013
Environmental Modelling & Software 25, 1508-1517. 1014

Schmitz OJ (2000) Combining field experiments and individual-based modeling to 1015
identify the dynamically relevant organizational scale for a field system. Oikos 89, 1016
471–484. 1017

Segovia-Juarez JL, Ganguli S, Kirschner D (2004) Identifying control mechanisms of 1018
granuloma formation during M. tuberculosis infection using an agent-based model. 1019
Journal of Theoretical Biology 231, 357–376. 1020

Stephens PA, Frey-Roos F, Arnold W, et al. (2002) Model complexity and population 1021
predictions. The alpine marmot as a case study. Journal of Animal Ecology 71, 343-1022
361. 1023

Storz J, Ramakrishnan U, Alberts S (2002) Genetic effective size of a wild primate 1024
population: Influence of current and historical demography. Evolution 56, 817-829. 1025

Tablado Z, Revilla E (2012) Contrasting effects of climate change on rabbit 1026
populations through reproduction. PLoS One 7(11): e48988. 1027

Tian T, Xu S, Gao J, et al. (2007) Simulated maximum likelihood method for 1028
estimating kinetic rates in gene expression. Bioinformatics 23: 84–91. 1029

Topping CJ, Hansen TS, Jensen TS, et al. (2003) ALMaSS, an agent-based model for 1030
animals in temperate European landscapes. Ecological Modelling 167, 65-82. 1031

Topping CJ, Hoye TT, Olesen CR (2010) Opening the black box: Development, testing 1032
and documentation of a mechanistically rich agent-based model. Ecological 1033
Modelling 221, 245-255. 1034

Webb CT, Hoeting JA, Ames GM, et al. (2010) A structured and dynamic framework 1035
to advance traits-based theory and prediction in ecology. Ecology Letters 13, 267-1036
283. 1037

Whitman K, Starfield AM, Quadling HS, et al. (2004) Sustainable trophy hunting of 1038
African lions. Nature 428, 175-178. 1039

Wiegand T, Knauer F, Kaczensky P, et al. (2004a) Expansion of brown bears (Ursus 1040
arctos) into the eastern Alps: a spatially explicit population model. Biodiversity and 1041
Conservation 13, 79-114. 1042

Wiegand T, Revilla E, Knauer F (2004b). Dealing with uncertainty in spatially explicit 1043
population models. Biodiversity and Conservation 13, 53-78. 1044

25

Wiegand T, Naves J, Stephan T, et al. (1998) Assessing the risk of extinction for the 1045
brown bear (Ursus arctos) in the Cordillera Cantabrica, Spain. Ecological 1046
Monographs 68, 539-570. 1047

Wilensky U (1999) NetLogo. http://ccl.northwestern.edu/netlogo/. Center for 1048
Connected Learning and Computer-Based Modeling, Northwestern University. 1049
Evanston, IL. 1050

Wilkinson D, Smith CG, Delahay RJ, et al. (2004) A model of bovine tuberculosis in 1051
the badger Meles meles: an evaluation of different vaccination strategies. Journal of 1052
Applied Ecology 41, 492-501. 1053

Willis J (2007) Could whales have maintained a high abundance of krill? 1054
Evolutionary Ecology Research 9, 651-662. 1055

Wood SN (2010) Statistical inference for noisy nonlinear ecological dynamic 1056
systems. Nature 466, 1102-1104. 1057

Zurell D, Berger U, Cabral JS, et al. (2010) The virtual ecologist approach: simulating 1058
data and observers. Oikos 119, 622-635. 1059

 1060

 1061

26

Table 1. The Overview, Design concepts and Details (ODD) protocol (modified from 1062
Grimm et al., 2006; 2010). 1063

Elements Questions
Overview Context and general information

1. Purpose What is the purpose of the model?
2. Entities, state

variables and
scales

What entities (e.g., individuals, collectives) are in the model? By what state
variables (attributes and traits) are these entities characterized? What are
the temporal and spatial resolutions and domains of the model?

3. Process overview
and scheduling

Who (entity) does what, and in what order? When are state variables
updated? How is time modeled, as discrete steps or as a continuum over
which both continuous processes and discrete events can occur?

Design Strategic considerations
4. Design concepts

4.1. basic
principles

Which theories, hypotheses, assumptions or modeling approaches are
behind a model’s design? How were they taken into account? Are they used
in submodels or at the system level? Will the model provide insights into
the basic principles themselves?

4.2. emergence What model results are expected to vary in complex and perhaps
unpredictable ways when particular characteristics of individuals or their
environment change? Are there other results that are more tightly
imposed by model rules and hence less dependent on interactions?

4.3. adaptation What adaptive traits do the individuals have? What rules do they have for
making decisions or changing behavior in response to changes in
themselves or their environment? Do these traits explicitly seek to
increase some measure of individual success regarding its objectives, or,
instead, cause individuals to reproduce previously observed behaviors?

4.4. objectives If adaptive traits explicitly act to increase some measure of individual
fitness, what exactly is that objective and how is it measured? When
individuals make decisions by ranking alternatives, what criteria do they
use?

4.5. learning Do individuals change their adaptive traits over time as a consequence of
experience? If so, how?

4.6. prediction How do individuals predict the future conditions (either environmental or
internal) they will experience? What internal models do they use to
estimate future conditions or the consequences of their decisions? What
tacit or hidden predictions are implied in these internal model
assumptions?

4.7. sensing What internal and environmental state variables (including those of other
individuals) are individuals assumed to sense and consider in their
decisions? Are there mechanisms by which individuals obtain information,
or are they assumed to know these variables?

4.8. interaction What kinds of interactions among agents are assumed? Are there direct
interactions in which individuals encounter and affect others, or are
interactions indirect? If the interactions involve communication, how is it
represented?

4.9. stochasticity What processes are modeled as random or partly random? Is stochasticity
used to reproduce variability in processes for which the actual causes of
the variability are unknown or not relevant? Is it used to model events or
behaviors with a specified probability?

4.10. collectives Are there social networks? If so, is its structure imposed (a priori
additional entity) or emergent? Are collectives affecting, or been affected
by the individuals?

4.11. observation What data are collected from the simulations for testing, understanding,
and analyzing the model? How and when are they collected?

Details Detailed technical description

27

5. Initialization What is the initial state of the model at the beginning of a simulation run?
Is initialization always the same, or is it allowed to vary among
simulations? Are the initial values chosen arbitrarily or based on data?

6. Input data Does the model use input from external sources such as data files or other
models to represent processes that change over time?

7. Submodels What, in detail, are the processes listed in point 3? How were they
designed, parameterized and tested? What are their parameters,
dimensions and reference values?

 1064

 1065

28

Table 2. Some issues to consider when comparing empirical and simulated data for 1066
model selection, validation and calibration. 1067

Data
Key data Empirical data directly related with the questions to be answered with the

model.
Ancillary or
secondary data

Empirical data not directly related with the questions. It contains
information useful in model selection and calibration. Often corresponds
to data at discordant spatiotemporal scales.

Estimates Key and secondary data can be quantitative, including point estimates and
their uncertainty and variability, or qualitative, such as trends

Summary statistics Aggregation of data into new simplified yet informative statistics (for
example calculating a growth rate from a raw series of census data). This
is often done to simplify the comparison between data and predictions.

Single vs multiple The amount of data can vary from a single key variable to multiple key
variables and secondary data.

Predictions
Symmetry We need to calculate as model output the same key and secondary

predictions as with the empirical data.
Single
parameterization

For a given parameterization we generate a frequency distribution of
model predictions by repeating a number of simulations with the
parameterization.

Output formats Predictions can be obtained as graphical outputs to visualize the results
and saved into files. It is convenient saving the parameterization within the
output files.

Multiple
parameterizations

Often we need to repeat the process for multiple parameterizations
obtained by moving across the parameter space.

Comparisons
The logic Systematically compare data and predictions to estimate the likelihood of

reproducing the observed data with a given parameterization and model
structure.

Types of
comparisons

Rejection filtering by using pattern oriented modelling or informal
likelihoods

 Direct calculation of the likelihood by running a sufficiently large number
of simulations

 Informal likelihoods (e.g. sum of squared differences between data and
predictions)

 Non-parametric likelihood approximations (e.g. kernel density
estimation)

 Parametric likelihood approximations (e.g. Z scores)
 Approximate Bayesian computation
Methods to define
parameterizations

Systematic search of the parameter space when the number of parameters
is low

 Latin hypercube sampling for more complex models

 Markov chain Monte Carlo strategies: Metropolis-Hastings and Gibbs
sampling algorithms and their variants.

 Sequential Monte Carlo approaches, also known as particle filters or
bootstrap filters

 Numerical optimization methods such as genetic algorithms, simulated
annealing, simplex algorithm or support vector machine algorithms

 1068

 1069

 1070

29

 1071

Box 11.1 Programs and software: A field guide to some individual based coding
environments

We can use three types of approaches: using software that allows for scripting using
interpreted languages, general multipurpose programing languages that allow for object
oriented programing, or specialized development environments created specifically to
build agent based models.

Approaches useful to build demonstrator models

We can create IBMs using software which allows for scripting, as is possible in some
spreadsheets such as Gnumeric, LibreOffice Calc or proprietary MsExcel, noting that you
need some knowledge of Visual Basic for Applications, Python or any other supported
scripting language to program the macros (e.g., Macal and North 2010Raisl). These
implementations are useful as demonstrators for learning concepts and teaching or for
implementing structurally very simple IBMs for which the analyses are simple. We can also
build IBMs in environments that are very efficient in making generalized scalar operations
such as in vectorial or array programming languages, such as R or Matlab, or even in more
eclectic languages such as Wolfram (running in proprietary Mathematica).

R is a software platform that allows for the efficient manipulation and analysis of relatively
small datasets. It is so flexible that we can also build IBMs with it. However, doing so is only
reasonable for learning purposes or when dealing with very simple IBMs (few parameters
and individuals). R uses array programing, operating with all the data simultaneously,
making the processing of large datasets inefficient. Therefore, it is slow and resource
hungry in dealing with the data we create when, for example, running a sensitivity analyses
across many-dimensional spaces. It is also an interpreted language, i.e., does not compile
the commands we write into machine code, making simulations much slower than other
alternatives.

General purpose development environments

This group refers to compiling object-oriented programming languages that allow
programming totally ad hoc models. Normally the source code is written within a computer
program called compiler that transforms the source language into a machine compatible
language that can be executed by the computer. This approach is more efficient than
interpreted languages, allowing for much faster simulations. Creating individuals is
straightforward using objects or classes. After compilation we can obtain a range of
possibilities, from a self-contained executable file to a sophisticated application with a
detailed Graphical User Interface (GUI, normally created by using Forms) that may allow
for interaction with the user during the initialization (e.g., for parameterization), a
graphical inspection of model behavior during run time and also the exploration of the
results. We can cite C++, Python (to some extent) or Java as general languages, with
different derivations of Fortran and Object Pascal being very popular in academic and
scientific applications. All of them have many compilers available. If you have some
experience programing this would probably be your best way to proceed.

To run the model we have several alternatives, very much dependent on the language we
are using and the environment (compiler and operating system). The most basic is a batch-
like mode in which, after asking for execution (e.g., by clicking in the exe file created by the
compiler after a successful compilation), all the code is executed at once with no further
intervention on our part. In most modern programing languages we interact with a

30

compiler that includes prewritten components (library-like) that can be used and reused
allowing for fast model construction and deployment. Forms are the most basic of such
components when running the program. They create a window that allows for interaction
between the user and the model at run time. Many other components can be used, including
buttons to be inserted in the form which execute some code when we click on them. Forms
and other components with which we interact are part of the GUI of our model. If, for
example, the pseudocode in Box 11.3 was written in a compiler allowing for forms, we
could add to it a button which on a click would run the subroutine for population dynamics.

Specialized development environments:

These are just implementations built using general programing languages but that offer
through an Application Programming Interface (API) access to precoded libraries that can
simplify the initial work of making explicit the conceptual model (Railsback et al., 2006).
Using a specific environment would save you a lot of time if you have no experience
programing. Running the model in specialized development environments is
straightforward, just follow the program instructions. Specific environments for building
IBMs have their own detailed documentation and many examples to build upon. A non-
exhaustive list would include:

 ALMaSS, Animal, Landscape and Man Simulation System. A complex highly specific
model, with detailed implementations built for different species (e.g., voles, skylarks). The
model is spatially explicit, including individual movement behavior, a landscape model that
can be dynamic and a weather simulator. Open source project written in C++. Topping et
al. (2003). http://ccpforge.cse.rl.ac.uk/gf/project/almass/

 GAMA. A highly flexible system that allows for the development of complex spatially
explicit models of potentially very large populations. The conceptual model is coded in
GAML language, which is a derivative of XML. Allows for calling R and SQL code using
several DBMS. The user interface is based on the Eclipse platform (which is itself mostly
written in Java). Grignard et al., (2013). http://code.google.com/p/gama-platform/

 Repast. A set of open source platforms to perform agent-based modelling and
simulations, including spatially explicit models. Different implementations either including
Java or C++ coding systems. Allows for fast simulations and large and very complex models
to be built. Very complete and with many tools available. Macal and North (2009).
http://repast.sourceforge.net/

 Mason. Multiagent simulation of neighborhoods. It is a discrete event agent based
simulation platform implemented in Java (requires experience with this language). It is
fast, flexible and portable across machines, with good capacity to run in batch mode with
no visualization. Luke et al., (2005). http://cs.gmu.edu/~eclab/projects/mason/

 NetLogo. A very intuitive and easy to use system to develop simple grid-based
models. Recommended for people with no programing experience. Based on a language
derived from Logo (but built in Java), with many primitives (built-in commands). Includes
a collection library with many ecological model examples. Well suited for educational
purposes, but simulations are very slow (does not compile into binary). Can be linked and
called from R using Rnetlogo. Wilensky (1999). http://ccl.northwestern.edu/netlogo/

 Swarm. It was the first platform developed for agent based simulation modelling.
Initially designed in Objective-C, currently runs in Java. Well organized and stable.
www.swarm.org

 1072

http://ccpforge.cse.rl.ac.uk/gf/project/almass/
http://code.google.com/p/gama-platform/
http://repast.sourceforge.net/
http://cs.gmu.edu/~eclab/projects/mason/
http://ccl.northwestern.edu/netlogo/
http://www.swarm.org/

31

Box 11.2 The population: creating the individuals.
There are two general ways to define and create individuals in general purpose
development environments. The methods used in specific development environments
can match these or be more graphical.

Lists of objects

It consists of using a list to generate a collection of objects where the list refers to the
population, and a class template of objects is used to represent agents or individuals (Box
11.3). Within the object oriented programing paradigm, classes are created to serve as
templates to define objects, which in our case will refer to individuals and the properties
or variables characterizing them. They can be seen as data structures. Additionally, in all
languages, classes can have methods associated with them. In principle we can create our
template for individuals without needing methods, using simplified class versions, if
available, (e.g., record in Pascal, or struct in C++). Once we have created (declared in
programming jargon) the data structure for our individuals, we need to declare and
create a list to manage a collection of pointers, each of which will be used to link each
individual we create. In such a manner we will be able to locate and distinguish
individuals even if they have the same trait values. The list can be seen as a container that
facilitates the management of individuals, allowing for adding, removing (and
destroying), searching, sorting, and counting among other useful methods. In summary,
we simply have to create the population (list) and add the number of individuals (objects)
we need, each of them with their own set of descriptors as specified in by the conceptual
model. Running many simulations can lead to problems of memory usage and allocation
in the computer, depending on the environment, language and compiler. To avoid this
situation we need to do the housekeeping of managing memory when destroying
individuals (or any other class) and when dealing with subroutines (for example, freeing
resources such as virtual memory).

Dynamic arrays

The second method consists in using dynamic arrays (arrays are simply vectors or
matrices in programming jargon). Obviously they also represent a data structure in which
each cell has a single value. In dynamic arrays we can keep the number of dimensions
variable in run-time. Therefore, by keeping constant the dimensions characterizing the
traits and variable one dimension representing the number of individuals, we can
describe a population. It is easy to understand how they work by analogy with a table in
a database: the columns describing trait variables will be a fixed dimension, each of which
represents a trait, and each of the rows will be an individual. This second dimension will
be dynamic, i.e., with a variable size because we should be able to create and delete items.
Dynamic arrays also come with useful methods associated with the management of the
items they contain.

 1073

 1074

32

Box 11.3 Pseudocode algorithm describing a basic IBM.
It represents a population with N individuals and with reproduction and survival as
demographic processes. We follow the list-class approach to create the population. The
model represents an exponential growth system (for example to evaluate a reintroduction
in the short term or a population collapse). The explicit parameters of this model are N0
initial population size; PR reproduction probability; PS survival probability; max_age
maximum age; t number of time steps simulated. Note that there are other implicit
parameters such as litter size, a constant that work as a model assumption. We move along
all individuals of the population using conditional loops (such as Do While- or For- loops,
which are sections of code that are repeated as long as a condition is met); note that we can
call one subroutine from another (as for survival called from population dynamics
subroutine).

//Declaring a container for our population, named “Population”
1: list Population

//Declaring the data structure for individuals (their traits)
2: class Individual
 Sex: string
 Age: integer

//Initializing a population of size N0;
3: procedure Initialize
4: create Population
5: with Population do
6: for 1 to N0
7: create individual
8: individual.sex = random(female/male)
9: individual.age = random(maximum_age)
10: add individual
11: endfor

//subroutine for reproduction with a breeding probability PR
12: procedure Reproduction
13: with Population do
14: N = Population size // assign current population size to variable N
15: for i =1 to N do
16: individual= [i]
17: if individual.sex=f then
18: if random<PR then
19: begin
20: create individual
21: individual.sex = random(f/m)
22: individual.age = 0
23: add individual
24: end
25: endfor

//subroutine for survival with a survival probability PS
26: procedure Survival
27: with Population do
28: N = Population size
29: for i =1 to N do
30: individual= [i]

33

31: if individual.age>max_age then delete individual else
32: if random>PS then delete individual else
33: individual.age=individual.age+1
34: endfor

//subroutine for population dynamics; this is the procedure we call to run the model
35: procedure Dynamics
36: N0 = #
37: t = #
38: PR = #

39: PS = #

40: max_age = #
41: Initialize
42: for time = 1 to t do
43: Reproduction
44: Survival
45: N = Population size
46: plot time vs N
47: save results
48: endfor

 1075

 1076

34

Box 11.4 Parameters, arguments and pseudorandom numbers
Parameters and arguments

With model parameters we refer to values that are relevant in our conceptual model and
that need to be considered either by themselves or as part of the functional relationships.
Their value can be constant in any parameterization (e.g. maximum life expectancy) or
can change between parameterizations. Additionally, model parameters can be sampled
from a distribution to represent not only the means but the variability of their estimates.
Arguments are information that we track at run time. They are normally needed by
subroutines or commands, for example, population size at a given time of a simulation,
which may be required in itself as output or to calculate density. They are sometimes
referred as summary statistics (Hartig et al., 2011).

Parameters and arguments are stored as variables which are identified by a symbolic
name (N for the argument population size or PS for the parameter defining survival
probability Box 11.3). Variables can be local or global depending on their scope. Typically
we tend to use local variables when dealing with information required only within a
subroutine (e.g., the variable describing the counter of a loop) and global ones when
needed throughout the model. Depending on the language that we are using, variables
may need to be explicitly declared, initialized, emptied before reuse and the type of
information they can store needs to be defined a priori (for example, a string or an integer
value). One important distinction is between variables that can hold a single value and
arrays that can have multiple ordered values in one or more dimensions (i.e., vectors and
matrices).

Variability and pseudorandom numbers

Some (or most) of the parameters used to parameterize a model have some associated
variability in relation to both uncertainty in the empirical estimates and natural
variability, typically in time, space or associated with interindividual variability. These
sources of stochasticity need to be dealt with, first in the conceptual model by identifying
and justifying which of them are relevant and then when defining the parameterizations
that will be used for sensitivity and further analyses.

In order to obtain a stochastic value from a known distribution we use standard
procedures that generate pseudorandom numbers and that are available in all compilers.
These procedures need to be initialized with a seed number. If we always use the same
seed, we will obtain the same sequence of numbers, which is helpful in detecting errors
in the code. Typically, when running simulations we use different seeds coming from a
highly variable source (such as the clock of the computer, with the help of the relevant
function), thus making the sequence more unpredictable (be aware that some of the
algorithms can be poor, with relatively short return rates).

Pseudorandom number generators produce numbers from a given distribution, usually a
uniform distribution between 0 and 1. Unless the probability density distribution that we
need is already implemented in the compiler, as often occurs with the normal distribution
(with a given mean and variance that we need to specify), we can use the pseudorandom
numbers obtained from the uniform distribution to randomly sample any other
probability density distribution or discrete probability histogram with a bit of thought
and simple math: by rejection sampling or using the inversion method (inverse transform
sampling) in which we use the cumulative distribution function of the known probability
distribution.

35

Often we may have erratic errors occurring at low rates. To locate where they occur in
the code, it helps to switch off the randomization process used to generate pseudorandom
numbers. In that way, the error will always occur at the very same point of the simulation,
allowing you to locate the problem. We can use breakpoints in the code just before the
error happens and then run the code line by line from within the compiler.

 1077

36

Box 11.5 Space representations
We can use two simple approaches to define space by using either a continuous or a
discrete space.

Continuous space

In this case the location of each individual within the spatial domain is defined using a
Cartesian or polar representation. This approach is typical of applications in which
individuals move independently of an environment or at most their movement is affected
only by a few spatial references that we can track with their coordinates, such as the
location of other individuals or the location of a nest. The location of each individual is
kept as individual traits (its coordinates) that change when it moves, whereas the spatial
resolution is given by the resolution of the numeric values used (e.g., integer or floating
types). Nevertheless, it is perfectly possible to use more complex vectorial map
representations, which will require a bit more thinking and recalling the trigonometry
we learned in secondary school

Discrete space

This approach is used in cases with more complex spatially explicit environmental
properties, such as several levels of habitat quality affecting survival or movement. In that
case we can represent a map as an array of one, two or three dimensions (more akin to a
raster GIS landscape map), depending on the required dimensionality: one for
landscapes, such as rivers, that can be represented linearly; two for x and y landscapes,
and three if we need x, y and z coordinates such as in the ocean, or if using a dynamic
landscape (x, y and t). In this array, each dimension is indexed between 0 and a maximum
value (as defined by the domain), with the index representing the spatial location
(coordinates) and the value at that location some relevant environmental property (for
example, 1 for presence of a nest, 0 for absence; or different values representing different
habitat qualities). The discrete space represented by the array has a typical resolution
(e.g., 10x10 m or 5x5 km) which is not explicit in itself. A good way to visualize this is to
think about the typical bidimensional map represented as a grid or a raster map with x
and y coordinates and a stored value within each grid-cell. Grid cells can be square or take
other shapes (hexagonal grids; Liu et al., 1995; Letcher et al., 1998). Very often the
resolution of the map is also used to define the coordinates of the position of individuals,
thus using only one spatial resolution in the model. If we do not use the same resolution
we have to deal with the scaling between the two, the one for individuals and the one for
the map, with some rules (such as rounding or truncation, behavior at the border of grid
cells, etc.). For most applications grid-based approaches may be sufficient, whereas for
very large domains it can be computationally demanding.

 1078

37

 1079

Box 11.6 Data in, data out
There are three ways to parameterize a model. The simplest is by typing assigning
statements in the code. For example, we can define that the variable storing the maximum
age that an individual could reach equals 10 years (max_age = 10 in Box 11.3). This can
be done with all the required information. Nevertheless, this approach is normally used
with parameters that will not change in between simulations (such as constants).

If our model has a GUI, we can add components to it on which we can specify parameter
values. There are many types of components, such as text, combo or drop-down list boxes,
all of which have a default value that can be changed again in the form once the code is
executed. Those values can easily be assigned to the relevant parameters. This method is
useful to explore model behavior.

The most efficient way for the analyses is using standalone files in which we specify all
the parameterization/s at once. The easiest is using text files with information delimited
in some way (e.g., comma, space or tab separated values) to allow for easy identification
of the values. Once the file is open and read, we can use a series of assigning statements
to initialize all the variables. All this can be programmed in a subroutine which will be
run early in the model to load all the parameters. Other types of files that can be used are
data tables belonging to a database. This is a bit more complex since we would need to
install the required ODBC (Open Database Connectivity) drivers for the specific database
engine (e.g., MySQL, PostgreSQL or DB2) and some libraries in our compiler.

Retrieving output data is done in a similar way to input data: plotting graphical output in
the GUI, saving it in text files or using a database engine from within the model. For
example, we can add a graph component to plot the trajectory of population size (Fig. 3).
Retrieving graphical output is very useful in the initial phases of model evaluation and
analysis, whereas saving data in files is the standard for in-depth analyses. Keeping the
output data together in the same files with the model parameters used (and the
constants) is always a good recommendation to avoid future confusion.

 1080

 1081

38

Figure 1. Simplified scheme of the modelling cycle for model design, including the 1082
modifications that often need to be introduced during consistency checking and 1083
analyses, both in the conceptual model and its implementation in the core model 1084
and even in the way we develop the question and predictions at hand. 1085
 1086

 1087

39

Figure 2. Schematic flow chart depicting the scheduling of a time step for the model 1088
described in Box 11.3. Time resolution is one year and space is implicit. 1089
 1090

 1091

40

Figure 3. Graphical output for population size simulated with the model given in Box 1092
11. 3 and parameterized with N0 = 30; PR =0.6; PS =0.9; max_age = 10; t =100. The 1093
plot corresponds to 10 simulated population trajectories and their average (bold 1094
line). With this parameterization we observe two extinctions and the effect of the 1095
initial condition lasting for the first 15 years. 1096

 1097

 1098

41

Figure 4. Schematic representation of the analyses of IBMs, including the steps of 1099
model debugging and consistency check, sensitivity and uncertainty analyses and 1100
model selection, calibration and validation. Key model predictions refer to the 1101
questions related with the questions for which the model was built. In the end, the 1102
initial questions should be answered within the inference constraints imposed by 1103
the results. Ideally, the results should help in improving the conceptual model. 1104

 1105

