News News

Pathogen transmission risk by gulls moving across human landscapes

Wildlife that exploit human-made habitats hosts and spreads bacterial pathogens. This shapes the epidemiology of infectious diseases and facilitates pathogen spill-over between wildlife and humans. This is a global problem, yet little is known about the dissemination potential of pathogen-infected animals. How this knowledge gap could be filled at regional scales is shown by combining molecular pathogen diagnosis with GPS tracking of pathogen-infected gulls. Specifically, pathogen risk maps of Salmonella, Campylobacter and Chlamydia were generated, based on the spatial movements of pathogen-infected yellow-legged gulls (Larus michahellis) equipped with GPS recorders. Also, crossing this spatial information with habitat information, critical habitats were identified for the potential transmission of these bacteria in southern Europe. The use of human-made habitats by infected-gulls could potentially increase the potential risk of direct and indirect bidirectional transmission of pathogens between humans and wildlife. These findings show that pathogen-infected wildlife equipped with GPS recorders can provide accurate information on the spatial spread risk for zoonotic bacteria. Integration of GPS-tracking with classical epidemiological approaches may help to improve zoonosis surveillance and control programs informacion[at]ebd.csic.es: Navarro et al (2019) Pathogen transmission risk by opportunistic gulls moving across human landscapes. Scientific Reports 9:10659 DOI 10.1038/s41598-019-46326-1


https://www.nature.com/articles/s41598-019-46326-1
Average (0 Votes)

Latest News Latest News

Parasitoidism of host flies by parasitoid wasps in Spain

Parasitoid wasps may act as hyperparasites and sometimes regulate the populations of their hosts by a top-down dynamic. Nasonia vitripennis is a generalist gregarious parasitoid that parasitizes...

LC-MS determination of catecholamines and related metabolites in red deer urine and hair

A novel analytical methodology for the determination and extraction of catecholamines (dopamine, epinephrine and norepinephrine) and their metabolites DL-3,4-dihydroxyphenyl glycol and...

Size increase without genetic divergence in the Eurasian water shrew Neomys fodiens

When a population shows a marked morphological change, it is important to know whether that population is genetically distinct; if it is not, the novel trait could correspond to an adaptation that...