News News

For a better production, agriculture areas need to recover at least 20% of natural habitat

International agreements aim to conserve 17% of Earth's land area by 2020 but include no area-based conservation targets within the working landscapes that support human needs through farming, ranching, and forestry. Through a review of country-level legislation, this study found that just 38% of countries have minimum area requirements for conserving native habitats within working landscapes. The study argues for increasing native habitats to at least 20% of working landscape area where it is below this minimum. Such target has benefits for food security, nature's contributions to people, and the connectivity and effectiveness of protected area networks in biomes in which protected areas are underrepresented. Other urgings of the review include maintaining native habitat at higher levels where it currently exceeds the 20% minimum, and a literature review shows that even more than 50% native habitat restoration is needed in particular landscapes. Including a >20% native habitats within working landscapes restoration target offers an unrivaled opportunity to simultaneously enhance biodiversity, food security and quality of life. The post-2020 Global Biodiversity Framework is an opportune moment to include a minimum habitat restoration target for working landscapes that contributes to, but does not compete with, initiatives for expanding protected areas, the UN Decade on Ecosystem Restoration (2021–2030) and the UN Sustainable Development Goals. informacion[at]ebd.csic.es: Garibaldi et al (2020) Working landscapes need at least 20% native habitat. Conserv Letter DOI: 10.1111/conl.12773


https://conbio.onlinelibrary.wiley.com/doi/full/10.1111/conl.12773
Average (0 Votes)

Latest News Latest News

Back

Changes in melanocyte RNA and DNA methylation favor pheomelanin synthesis and may avoid systemic oxidative stress after dietary cysteine supplementation in birds

Changes in melanocyte RNA and DNA methylation favor pheomelanin synthesis and may avoid systemic oxidative stress after dietary cysteine supplementation in birds

Cysteine plays essential biological roles, but excessive amounts produce cellular oxidative stress. Cysteine metabolism is mainly mediated by the enzymes cysteine dioxygenase and ?-glutamylcysteine synthetase, respectively coded by the genes CDO1 and GCLC. Here a new hypothesis is tested posing that the synthesis of the pigment pheomelanin also contributes to cysteine homeostasis in melanocytes, where cysteine can enter the pheomelanogenesis pathway. An experiment was conducted in the Eurasian nuthatch Sitta europaea, a bird producing large amounts of pheomelanin for feather pigmentation, to investigate if melanocytes show epigenetic lability under exposure to excess cysteine. Systemic cysteine levels were increased in nuthatches by supplementing them with dietary cysteine during growth. This caused in feather melanocytes the downregulation of genes involved in intracellular cysteine metabolism (GCLC), cysteine transport to the cytosol from the extracellular medium (Slc7a11) and from melanosomes (CTNS), and regulation of tyrosinase activity (MC1R and ASIP). These changes were mediated by increases in DNA m5C in all genes excepting Slc7a11, which experienced RNA m6A depletion. Birds supplemented with cysteine synthesized more pheomelanin than controls, but did not suffer higher systemic oxidative stress. These results suggest that excess cysteine activates an epigenetic mechanism that favors pheomelanin synthesis and may protect from oxidative stress. informacion[at]ebd.csic.es: Rodríguez-Martínez et al (2019) Changes in melanocyte RNA and DNA methylation favor pheomelanin synthesis and may avoid systemic oxidative stress after dietary cysteine supplementation in birds


https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.15024