News News

Impact of fisheries on sea turtles

The bycatch of sea turtles by industrial fisheries is receiving an increasing attention in recent years due to the high impact it causes on these endangered species. This issue was evaluated in southern Spain waters that harbors an important feeding ground of loggerhead and leatherback turtles, including the endangered Eastern Atlantic loggerhead population. To quantify the impact that different fisheries represents to sea turtles, 272 fishermen answered to detailed illustrated questionnaires in all the main ports of Andalusia and Murcia (Spain) during 2014. This study has updated the knowledge of turtle bycatch in the southwestern Mediterranean revealing a widespread impact of fisheries on sea turtles. Fishermen recognized an annual catch of 2.3 turtles per boat. Considering the census of industrial fishing boats in the study area (1182), more than 2840 sea turtles could be bycaught per year in the study area. Most of captures (96.2%) were produced during the summer. These results suggest a severe impact of most of legal fisheries (surface longline, pursue seine, trawling and small scale fisheries) on loggerhead feeding grounds in the southwestern Mediterranean. Fishermen suggests that drift fishing conducted by foreign or illegal fishermen and almadrabas are also causing a significant bycatch of turtles. Several measures such as reviewing compliance of current fishing and environmental regulations, modifying turtle technics to reduce turtle bycatch (e.g. reduction of the use of squid as bait and disposal of hooks deeper in the water column), facilitating the rescue and handle of wound turtles and their transport to the port for recovery, and recognizing the efforts of anglers to perform a more sustainable fishing, are recommended to mitigate this impact. informacion[at]ebd.csic.es: Marco et al (2020) Sea turtle bycatch by different types of fisheries in southern Spain. Basic and Applied Herpetology https://doi.org/10.11160/bah.187


http://ojs.herpetologica.org/index.php/bah/article/view/187
Average (0 Votes)

Latest News Latest News

Back

Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum

Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum

Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, a genome-wide profiling of chromatin accessibility was performed in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. This assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. The dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum. informacion[at]ebd.csic.es: Ruiz et al (2018) Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res https://doi.org/10.1093/nar/gky643


https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gky643/5054866?guestAccessKey=c45cf7d4-f086-449f-a39e-246f7a8122fe