News News

Influencia diferencial de la expresión de Slc7a11 y la condición corporal sobre la pigmentación producida por feomelanina en dos poblaciones de trepador azul Sitta europea con diferente riesgo de depredación

The expression of the gene Slc7a11 promotes the antioxidant capacity of cells by providing them with cysteine that can be used for the synthesis of glutathione (GSH), the most important intracellular antioxidant. In melanocytes, intracellular cysteine can also enter melanosomes and get incorporated in the pigment pheomelanin synthesis pathway, thus decreasing cysteine availability for GSH synthesis and potentially creating chronic oxidative stress. Therefore, this study hypothesized that a mechanism limiting the use of intramelanocytic cysteine for pheomelanin synthesis in environmental conditions generating oxidative stress may be physiologically advantageous and favored by natural selection. Evidence we searched of such a mechanism by comparing the influence of melanocytic Slc7a11 expression on pheomelanin?based pigmentation in developing Eurasian nuthatch Sitta europaea nestlings from two populations differing in predation risk, a natural source of oxidative stress. Pheomelanin synthesis and pigmentation tended to increase with Slc7a11 expression in the low?risk population as expected from the activity of this gene, but decreased with Slc7a11 expression in the high?risk population. The same was not observed in the expression of five other genes influencing pheomelanin synthesis without affecting cysteine availability in melanocytes. The influence of body condition on the intensity of pheomelanin?based pigmentation also differed between populations, being positive in the low?risk population and negative in the high?risk population. The resulting pigmentation of birds was more intense in the high?risk population. These findings suggest that birds perceiving high predation risk may limit the use of cysteine for pheomelanin synthesis, which becomes independent of Slc7a11 expression. Some birds may have thus evolved the ability to adjust their pigmentation phenotype to environmental stress. informacion[at] Galván & Sanz (2020) Differential influence of Slc7a11 expression and body condition on pheomelanin-based pigmentation in two Eurasian nuthatch Sitta europaea populations with different predation risk. J Avian Biol DOI 10.1111/jav.02275
Average (0 Votes)

Latest News Latest News


Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum

Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum

Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, a genome-wide profiling of chromatin accessibility was performed in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. This assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. The dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum. informacion[at] Ruiz et al (2018) Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res