News News

Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones

The most common ecological response to climate change is the shifts in species distribution ranges. Nevertheless, landscape fragmentation compromises the ability of limited dispersal species to move following these climate changes. Building connected environments that enable species to track climate changes is an ultimate goal for biodiversity conservation. An experiment was conducted to determine if electric power transmission lines could be transformed in a continental network of biodiversity reserves for small animals. The study analysed if the management of the habitat located inside the base of the transmission electric towers (providing refuge and planting seedlings of native shrub) allowed to increase local richness of target species (i.e., small mammals and some invertebrates' groups). The results confirmed that by modifying the base of the electric transmission towers density and diversity of several species of invertebrates and small mammals increased as well as number of birds and bird species, increasing local biodiversity. The study suggests that modifying the base of the electric towers would potentially facilitate the connection of fragmented populations. This idea would be easily applicable in any transmission line network anywhere around the world, making it possible for the first time to build up continental scale networks of connectivity. informacion[at]ebd.csic.es: Ferrer et al (2020) Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones? Diversity 12(11): 439; https://doi.org/10.3390/d12110439

Read press release (Spanish)


https://www.mdpi.com/1424-2818/12/11/439
Average (0 Votes)

Latest News Latest News

Back

How will climate change affect endangered Mediterranean waterbirds

How will climate change affect endangered Mediterranean waterbirds

Global warming and direct anthropogenic impacts, such as water extraction, largely affect water budgets in Mediterranean wetlands, thereby increasing wetland salinities and isolation, and decreasing water depths and hydroperiods (duration of the inundation period). These wetland features are key elements structuring waterbird communities. However, the ultimate and net consequences of these dynamic conditions on waterbird assemblages are largely unknown. A regular sampling of waterbird presence through one annual cycle was combined with in-situ data on relevant environmental predictors of waterbird distribution to model habitat selection for 69 species in a typical Mediterranean wetland network in southwestern Spain. Species associations with environmental features were subsequently used to predict changes in habitat suitability for each species under three climate change scenarios (encompassing changes in environmental predictors that ranged from 10% to 50% change as predicted by regional climatic models). Waterbirds distributed themselves unevenly throughout environmental gradients and water salinity was the most important gradient structuring the distribution of the community. Environmental suitability for the guilds of diving birds and vegetation gleaners will decline in future climate scenarios, while many small wading birds will benefit from changing conditions. Resident species and those that breed in this wetland network will also be more negatively impacted than those using this area for wintering or stopover. A tool that can be used in a horizon-scanning framework to identify emerging issues in waterbird conservation and to anticipate suitable management actions is provided here. informacion[at]ebd.csic.es Ramírez et al (2018) How will climate change affect endangered Mediterranean waterbirds? PLoS ONE 13(2): e0192702. https://doi.org/10.1371/journal.pone.0192702


http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192702