News News

Human impact has contributed to the decline of the Eurasion lynx

Disentangling the contribution of long?term evolutionary processes and recent anthropogenic impacts to current genetic patterns of wildlife species is key to assessing genetic risks and designing conservation strategies. Eighty whole nuclear genomes and 96 mitogenomes from populations of the Eurasian lynx covering a range of conservation statuses, climatic zones and subspecies across Eurasia were used to infer the demographic history, reconstruct genetic patterns, and discuss the influence of long?term isolation and more recent human?driven changes. Results show that Eurasian lynx populations shared a common history until 100,000 years ago, when Asian and European populations started to diverge and both entered a period of continuous and widespread decline, with western populations, except Kirov (Russia), maintaining lower effective sizes than eastern populations. Population declines and increased isolation in more recent times probably drove the genetic differentiation between geographically and ecologically close westernmost European populations. By contrast, and despite the wide range of habitats covered, populations are quite homogeneous genetically across the Asian range, showing a pattern of isolation by distance and providing little genetic support for the several proposed subspecies. Mitogenomic and nuclear divergences and population declines starting during the Late Pleistocene can be mostly attributed to climatic fluctuations and early human influence, but the widespread and sustained decline since the Holocene is more probably the consequence of anthropogenic impacts which intensified in recent centuries, especially in western Europe. Genetic erosion in isolated European populations and lack of evidence for long?term isolation argue for the restoration of lost population connectivity between European and Asian poulations. informacion[at]ebd.csic.es: Lucena-Perez et al (2020). Genomic patterns in the widespread Eurasian lynx shaped by Late Quaternary climatic fluctuations and anthropogenic impacts. MOL ECOL 29(4) DOI 10.1111/mec.15366


https://onlinelibrary.wiley.com/doi/full/10.1111/mec.15366
Average (0 Votes)

Latest News Latest News

Back

Avian eggshells coping with solar radiation

Avian eggshells coping with solar radiation

Solar radiation is an important driver of animal coloration, not only because of the effects of coloration on body temperature but also because coloration may protect from the deleterious effects of UV radiation. Indeed, dark coloration may protect from UV, but may increase the risk of overheating. In addition, the effect of coloration on thermoregulation should change with egg size, as smaller eggs have higher surface?volume ratios and greater convective coefficients than larger eggs, so that small eggs can dissipate heat quickly. To test whether the reflectance of eggshells, egg spottiness, and egg size of the ground?nesting Kentish plover Charadrius alexandrinus is affected by maximum ambient temperature and solar radiation at breeding sites, reflectance, both in the UV and human visible spectrum, spottiness, and egg size in photographs from a museum collection of plover eggshells were measured. Eggshells of lower reflectance (darker) were found at higher latitudes. However, in southern localities where solar radiation is very high, eggshells are also of dark coloration. Eggshell coloration had no significant relationship with ambient temperature. Spotiness was site?specific. Small eggs tended to be light?colored. Thermal constraints may drive the observed spatial variation in eggshell coloration, which may be lighter in lower latitudes to diminish the risk of overheating as a result of higher levels of solar radiation. However, in southern localities with very high levels of UV radiation, eggshells are of dark coloration likely to protect embryos from more intense UV radiation. Egg size exhibited variation in relation to coloration, likely through the effect of surface area?to?volume ratios on overheating and cooling rates of eggs. Therefore, differential effects of solar radiation on functions of coloration and size of eggshells may shape latitudinal variations in egg appearance in the Kentish plover. informacion[at]ebd.csic.es: Gómez et al (2018) Latitudinal variation in biophysical characteristics of avian eggshells to cope with differential effects of solar radiation. Ecol Evol Doi 10.1002/ece3.4335


https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4335