News News

El CSIC advierte de que la biodiversidad de los ecosistemas alpinos africanos está en extinción por la presión humana

Lobo etíope / Pixabay

The conservation of tropical montane biodiversity requires a holistic approach, using genetic, ecological and geographic information to understand the effects of environmental changes across temporal scales and simultaneously addressing the impacts of multiple threats. This problem is especially acute in understudied and highly threatened areas like the Ethiopian Highlands, where accelerated land conversion and degradation is placing further pressures on biodiversity.

While climate change is recognized as a major future threat to biodiversity, most species are currently threatened by extensive human?induced habitat loss, fragmentation and degradation. Tropical high?altitude alpine and montane forest ecosystems and their biodiversity are particularly sensitive to temperature increases under climate change, but they are also subject to accelerated pressures from land conversion and degradation due to a growing human population.

A research team have studied the combined effects of anthropogenic land?use change, past and future climate changes and mountain range isolation on the endemic Ethiopian Highlands long?eared bat, Plecotus balensis, an understudied bat that is restricted to the remnant natural high?altitude Afroalpine and Afromontane habitats.

The EBD researcher Javier Juste participated in this study, together with the University of Exeter and the University of Stirling, in the United Kingdom; Dire Dawa University in Ethiopia; the Center for Research in Biodiversity and Genetic Resources (CIBIO), Veirão, and the University of Porto, in Portugal; and the CIBER of Epidemiology and Public Health, of Madrid.

The research team integrated ecological niche modelling, landscape genetics and model?based inference to assess the genetic, geographic and demographic impacts of past and recent environmental changes. They show that mountain range isolation and historic climates shaped population structure and patterns of genetic variation, but recent anthropogenic land?use change and habitat degradation are associated with a severe population decline and loss of genetic diversity.

Models predict that the suitable niche of this bat has been progressively shrinking since the last glaciation period. This study highlights threats to Afroalpine and Afromontane biodiversity, squeezed to higher altitudes under climate change while losing genetic diversity and suffering population declines due to anthropogenic land?use change.

The study concludes that the conservation of tropical montane biodiversity requires a holistic approach, using genetic, ecological and geographic information to understand the effects of environmental changes across temporal scales and simultaneously addressing the impacts of multiple threats.

 

informacion[at]ebd.csic.es

REFERENCIA:

Orly Razgour, Mohammed Kasso, Helena Santos, Javier Juste (2020) Threats to Afromontane biodiversity from climate change and habitat loss revealed by genetic monitoring of the Ethiopian Hi ghlands bat. Evolutionary applications. DOI: 10.1111/eva.13161

Read full press release (Spanish)
 


Average (0 Votes)

Latest News Latest News

Back

A timeline for the urbanization of wild birds: The case of the lesser kestrel

A timeline for the urbanization of wild birds: The case of the lesser kestrel

The Lesser kestrel (Falco naumanni) evolved as a separate species in the Old-World kestrel radiation starting in the late Miocene. Given that the first cities were erected in the Holocene, this urban colonial raptor has only become a major town dweller recently in its evolutionary history. Today, more than 95% of lesser kestrel colonies in Spain and other Mediterranean countries are on buildings, and the remaining few are on rocky outcrops, that may have been the original nesting substrate for this cavity-nesting bird. Lesser kestrel fossils are well represented in cave sites, and their paleontological distribution, spanning from the Early Paleolithic to the Epipaleolithic, agrees well with its current breeding distribution. According to classical sources, such as the works of Columella and Pliny the Elder, and the presence of a skeletal remain in a Roman villa near Madrid, lesser kestrels may have nested in buildings and in urban settings for at least 2000e2500 years. However, there are no surviving colonies in structures older than 1400 years in Andalusia, nor in Spain. For a sample of 349 colonies on ancient buildings, a majority of the structures had been erected between the 15th and 17th centuries, this putting a time limit of about 300-600 years to the existence of those seemingly immemorial colonies. For specific towns and buildings, written references for the presence of lesser kestrel colonies do not go back more than two centuries. In fact, the Cathedral of Sevilla may be the structure with the longest continuous occupation by lesser kestrels recorded up to present time, from 1834 to 2020. Lesser kestrels were possibly too common in human settlements in the past as to be noted as special. This may explain the scarcity of references to the species until the 19th century. In any case, the same lack of information affects the other major Eurasian urban birds, as no timeline exist for the urbanization process of any other bird species. Here authors propose that lesser kestrels became urban breeders when both adequate cavities in buildings and cereal fields, where they capture their invertebrate prey, became available in their breeding range, several millennia ago. However, urban colonies, in contrast with the ones on stable geological substrates, have been forced to move from building to building when older ones became ruinous or were rebuilt, but new structures with suitable cavities became available throughout History. informacion[at]ebd.csic.es: Negro et al (2020) A timeline for the urbanization of wild birds: The case of the lesser kestrel. Quaternary Sci Rev https://doi.org/10.1016/j.quascirev.2020.106638


https://www.sciencedirect.com/science/article/pii/S0277379120306004?via%3Dihub