News News

Argentine ants harm nestlings of the blue tit

The consequences of ant invasions on ecosystems may only become apparent after long periods. In addition, predicting how sensitive native fauna will respond is only possible if the underlying proximate mechanisms of their impact are identified. The attraction of the native and invasive ant community to artificial bird nests was studied, together with reproduction of a wild native songbird over five consecutive breeding seasons in relation to the presence of an invasive ant species. Biometric, reproductive and individual blood parameters of great tits Parus major breeding in invaded as compared to uninvaded sites by Argentine ants Linepithema humile were analysed. Great tits bred preferably in uninvaded territories by the Argentine ant. Moreover, Argentine ants were more abundant at nests in invaded sites, than any native ant species were at uninvaded sites. Further, Argentine ants recruited at the artificial nests more intensively and responded to a larger variety of nest (intact eggs, cracked eggs, faeces, and cracked eggs plus faeces) contents than native species. Although breeding success and adult condition did not vary in relation to invasion status, offspring quality was negatively affected by the presence of Argentine ants. Nestlings reared in invaded sites were lighter, with lower wing/tarsus length ratio and had a reduced nutritional condition and altered oxidative stress balance as measured from several blood parameters. The interspersed distribution and small distance between invaded versus uninvaded territories suggest that ant presence affects nestling condition through direct interference at the nest. These results highlight the importance of evaluating the proximate effects like physiological parameters of the native fauna, when studying invasive ant-native bird interactions. informacion[at]ebd.csic.es: Álvarez et al (2020) Breeding consequences for a songbird nesting in Argentine ant' invaded land. Biol Invasions https://doi.org/10.1007/s10530-020-02297-3


https://link.springer.com/article/10.1007/s10530-020-02297-3
Average (0 Votes)

Latest News Latest News

Back

Determination of anthropogenic contamination in surface waters using helophytes

Determination of anthropogenic contamination in surface waters using helophytes

Nitrogen (N) loading from anthropogenic activities is contributing to the eutrophication and degradation of wetlands worldwide. Doñana (southwestern Spain), includes a dynamic marshland protected as a UNESCO World Heritage Site, which has a catchment area exposed to increasing N inputs from intensive agriculture and poorly treated urban wastewaters. Identifying the sources of N entering this iconic wetland complex is vital for its conservation. To this end, multiyear (2014–2016), spatially-explicit data on N concentration in water samples were combined with measurements on the relative abundance of N stable isotopes (d15N) in Bolboschoenus maritimus and Typha domingensis, two dominant helophytes (i.e. emergent macrophytes) in the Doñana marsh and entry streams. Overall, plant tissues from entry streams showed higher d15N values than those from the marsh, particularly in those streams most affected by urban wastewaters. Isotopic values did not differ between plant species. Water samples affected by isotopically-enriched urban wastewaters and other diffuse organic N inputs (e.g. livestock farming) had relatively high Dissolved Inorganic Nitrogen (DIN) concentrations. In contrast, in streams mainly affected by diffuse N pollution from greenhouse crops, high DIN values were related to isotopically-depleted N sources (e.g., inorganic fertilizers). Thus, helophytes, in combination with other parameters such as N concentration in water or land cover, can be valuable indicators of anthropogenic pressures in Mediterranean wetlands. Helophytes have widespread distributions, and can be readily sampled even when water is no longer present. However, identification of specific N sources through helophyte d15N values is limited when key potential N sources are isotopically undistinguishable (e.g. fertilizers vs. atmospheric sources). informacion[at]ebd.csic.es: Paredes et al (2019) Stable isotopes in helophytes reflect anthropogenic nitrogen pollution in entry streams at the Doñana World Heritage Site. Ecol Indicators 97: 130-140. Doi 10.1016/j.ecolind.2018.10.0009


https://www.sciencedirect.com/science/article/pii/S1470160X18307702