News News

Influencia diferencial de la expresión de Slc7a11 y la condición corporal sobre la pigmentación producida por feomelanina en dos poblaciones de trepador azul Sitta europea con diferente riesgo de depredación

The expression of the gene Slc7a11 promotes the antioxidant capacity of cells by providing them with cysteine that can be used for the synthesis of glutathione (GSH), the most important intracellular antioxidant. In melanocytes, intracellular cysteine can also enter melanosomes and get incorporated in the pigment pheomelanin synthesis pathway, thus decreasing cysteine availability for GSH synthesis and potentially creating chronic oxidative stress. Therefore, this study hypothesized that a mechanism limiting the use of intramelanocytic cysteine for pheomelanin synthesis in environmental conditions generating oxidative stress may be physiologically advantageous and favored by natural selection. Evidence we searched of such a mechanism by comparing the influence of melanocytic Slc7a11 expression on pheomelanin?based pigmentation in developing Eurasian nuthatch Sitta europaea nestlings from two populations differing in predation risk, a natural source of oxidative stress. Pheomelanin synthesis and pigmentation tended to increase with Slc7a11 expression in the low?risk population as expected from the activity of this gene, but decreased with Slc7a11 expression in the high?risk population. The same was not observed in the expression of five other genes influencing pheomelanin synthesis without affecting cysteine availability in melanocytes. The influence of body condition on the intensity of pheomelanin?based pigmentation also differed between populations, being positive in the low?risk population and negative in the high?risk population. The resulting pigmentation of birds was more intense in the high?risk population. These findings suggest that birds perceiving high predation risk may limit the use of cysteine for pheomelanin synthesis, which becomes independent of Slc7a11 expression. Some birds may have thus evolved the ability to adjust their pigmentation phenotype to environmental stress. informacion[at] Galván & Sanz (2020) Differential influence of Slc7a11 expression and body condition on pheomelanin-based pigmentation in two Eurasian nuthatch Sitta europaea populations with different predation risk. J Avian Biol DOI 10.1111/jav.02275
Average (0 Votes)

Latest News Latest News


LC-MS determination of catecholamines and related metabolites in red deer urine and hair

LC-MS determination of catecholamines and related metabolites in red deer urine and hair

A novel analytical methodology for the determination and extraction of catecholamines (dopamine, epinephrine and norepinephrine) and their metabolites DL-3,4-dihydroxyphenyl glycol and DL-3,4-dihydroxymandelic acid by LC-MS is here developed and validated for application to human and animal urine and hair samples. The method is based on the preliminary extraction of analytes by a magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite. This is followed by a < 9 min chromatographic separation of the target compounds in an Onyx Monolithic C18 column using a mixture of 0.01% (v/v) heptafluorobutyric acid in water and methanol at 500 µL min-1 flow rate. Detection limits within range from 0.055 to 0.093 µg mL-1, and precision values of the response and retention times of analytes were > 90%. Accuracy values comprised the range 79.5–109.5% when the analytes were extracted from deer urine samples using the selected MMWCNT-poly(STY-DVB) sorbent. This methodology was applied to real red deer urine and hair samples, the resulting concentrations within range from 0.05 to 0.5 µg mL-1for norepinephrine and from 1.0 to 44.5 µg mL-1 for its metabolite 3,4-dihydroxyphenyl glycol. Analyses of red deer hair resulted in high amounts of 3,4-dihydroxyphenyl. informacion[at] Murtada et al (2019) LC-MS determination of catecholamines and related metabolites in red deer urine and hair extracted using magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite. J Chromatogr B