News News

Restored and artificial wetlands do not support the same waterbird functional diversity as natural wetlands

The restoration of degraded areas and the creation of artificial ecosystems have partially compensated for the continuing loss of natural wetlands. However, the success of these wetlands in terms of the capacity of supporting biodiversity and ecosystem functions is unclear. Natural, restored, and artificially created wetlands present within the Doñana protected area were compared to evaluate if they are equivalent in terms of waterbird functional trait diversity and composition. Functional diversity measures and functional group species richness describing species diet, body mass, and foraging techniques were modelled in 20 wetlands in wintering and breeding seasons. Artificial wetlands constructed for conservation failed to reach the functional diversity of natural and restored wetlands. Unexpectedly, artificial ponds constructed for fish production performed better, and even exceeded natural wetlands for functional richness during winter. Fish ponds stood out as having a unique functional composition, connected with an increase in richness of opportunistic gulls and a decrease in species sensitive to high salinity. Overall, the functional structure of breeding communities was more affected by wetland type than wintering communities. These findings suggest that compensating the loss of natural wetlands with restored and artificial wetlands results in systems with altered waterbird?supported functions. Protection of natural Mediterranean wetlands is vital to maintain the original diversity and composition of waterbird functional traits. Furthermore, restoration must be prioritised over the creation of artificial wetlands, which, even when intended for conservation, may not provide an adequate replacement. informacion[at]ebd.csic.es: Almeida et al. (2020) Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshwater Biology DOI 10.1111/fwb.13618


https://onlinelibrary.wiley.com/doi/full/10.1111/fwb.13618
Average (0 Votes)

Latest News Latest News

Back

Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management

Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management

The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human–carnivore conflict, which has led to long-term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the ‘pre-genomic era' and the first insights of the ‘genomics era'. Findings derived from analyses of three compartments of the mammalian genome with different inheritance modes are analysed, summarized and discussed. To describe large-scale trends and patterns of genetic variation in European wolf populations, authors conducted a meta-analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available. Different indices of genetic diversity in wolf populations were compared and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650?850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, the most pressing issues threatening wolf populations in Europe are discussed, important gaps in current knowledge highlighted, solutions to overcome these limitations suggested, and recommendations for science-based wolf conservation and management at regional and Europe-wide scales are provided. informacion[at]ebd.csic.es: Hindrikson et al (2016) Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev doi: 10.1111/brv.12298


http://onlinelibrary.wiley.com/doi/10.1111/brv.12298/abstract;jsessionid=253D80DCC1F9422D8BA60477025D1F55.f03t04