News News

Impact of fisheries on sea turtles

The bycatch of sea turtles by industrial fisheries is receiving an increasing attention in recent years due to the high impact it causes on these endangered species. This issue was evaluated in southern Spain waters that harbors an important feeding ground of loggerhead and leatherback turtles, including the endangered Eastern Atlantic loggerhead population. To quantify the impact that different fisheries represents to sea turtles, 272 fishermen answered to detailed illustrated questionnaires in all the main ports of Andalusia and Murcia (Spain) during 2014. This study has updated the knowledge of turtle bycatch in the southwestern Mediterranean revealing a widespread impact of fisheries on sea turtles. Fishermen recognized an annual catch of 2.3 turtles per boat. Considering the census of industrial fishing boats in the study area (1182), more than 2840 sea turtles could be bycaught per year in the study area. Most of captures (96.2%) were produced during the summer. These results suggest a severe impact of most of legal fisheries (surface longline, pursue seine, trawling and small scale fisheries) on loggerhead feeding grounds in the southwestern Mediterranean. Fishermen suggests that drift fishing conducted by foreign or illegal fishermen and almadrabas are also causing a significant bycatch of turtles. Several measures such as reviewing compliance of current fishing and environmental regulations, modifying turtle technics to reduce turtle bycatch (e.g. reduction of the use of squid as bait and disposal of hooks deeper in the water column), facilitating the rescue and handle of wound turtles and their transport to the port for recovery, and recognizing the efforts of anglers to perform a more sustainable fishing, are recommended to mitigate this impact. informacion[at]ebd.csic.es: Marco et al (2020) Sea turtle bycatch by different types of fisheries in southern Spain. Basic and Applied Herpetology https://doi.org/10.11160/bah.187


http://ojs.herpetologica.org/index.php/bah/article/view/187
Average (0 Votes)

Latest News Latest News

Back

Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management

Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management

The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human–carnivore conflict, which has led to long-term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the ‘pre-genomic era' and the first insights of the ‘genomics era'. Findings derived from analyses of three compartments of the mammalian genome with different inheritance modes are analysed, summarized and discussed. To describe large-scale trends and patterns of genetic variation in European wolf populations, authors conducted a meta-analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available. Different indices of genetic diversity in wolf populations were compared and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650?850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, the most pressing issues threatening wolf populations in Europe are discussed, important gaps in current knowledge highlighted, solutions to overcome these limitations suggested, and recommendations for science-based wolf conservation and management at regional and Europe-wide scales are provided. informacion[at]ebd.csic.es: Hindrikson et al (2016) Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev doi: 10.1111/brv.12298


http://onlinelibrary.wiley.com/doi/10.1111/brv.12298/abstract;jsessionid=253D80DCC1F9422D8BA60477025D1F55.f03t04