News News

Human activities link fruit bat presence to Ebola virus disease outbreaks

A significant link between forest loss and fragmentation and outbreaks of Ebola virus disease (EVD) in humans has been documented. Deforestation may alter the natural circulation of viruses and change the composition, abundance, behaviour and possibly viral exposure of reservoir species. This in turn might increase contact between infected animals and humans. Fruit bats of the family Pteropodidae have been suspected as reservoirs of the Ebola virus. At present, the only evidence associating fruit bats with EVD is the presence of seropositive individuals in eight species and polymerase chain reaction-positive individuals in three of these. This study investigates whether human activities can increase African fruit bat geographical ranges and whether this influence overlaps geographically with EVD outbreaks that, in turn, are favoured by deforestation. Species observation records were used for the 20 fruit bat species found in favourable areas for the Ebola virus to determine factors affecting the bats' range inside the predicted Ebola virus area. The range of some fruit bat species appeared to be linked to human activities within the favourable areas for the Ebola virus. More specifically, the areas where human activities favour the presence of five fruit bat species overlap with the areas where EVD outbreaks in humans were themselves favoured by deforestation. These five species are as follows: Eidolon helvum, Epomops franqueti, Megaloglossus woermanni, Micropteropus pusillus and Rousettus aegyptiacus. Of these five, all but Megaloglossus woermanni have recorded seropositive individuals. For the remaining 15 bat species, no biogeographical support was found for the hypothesis that positive human influence on fruit bats could be associated with EVD outbreaks in deforested areas within the tropical forest biome in West and Central Africa. This work is a useful first step allowing further investigation of the networks and pathways that may lead to an EVD outbreak. The modelling framework employed in this study can be used for other emerging infectious diseases. informacion[at]ebd.csic.es: Olivero et al (2019) Human activities link fruit bat presence to Ebola virus disease outbreaks. Mammal Review. DOI 10.1111/mam.12173


https://onlinelibrary.wiley.com/doi/full/10.1111/mam.12173
Average (0 Votes)

Latest News Latest News

Back

Size increase without genetic divergence in the Eurasian water shrew Neomys fodiens

Size increase without genetic divergence in the Eurasian water shrew Neomys fodiens

When a population shows a marked morphological change, it is important to know whether that population is genetically distinct; if it is not, the novel trait could correspond to an adaptation that might be of great ecological interest. Here, a subspecies of water shrew, Neomys fodiens niethammeri, which is found in a narrow strip of the northern Iberian Peninsula was studied. This subspecies presents an abrupt increase in skull size when compared to the rest of the Eurasian population, which has led to the suggestion that it is actually a different species. Skulls obtained from owl pellets collected over the last 50 years allowed performing a morphometric analysis in addition to an extensive multilocus analysis based on short intron fragments successfully amplified from these degraded samples. Interestingly, no genetic divergence was detected using either mitochondrial or nuclear data. Additionally, an allele frequency analysis revealed no significant genetic differentiation. The absence of genetic divergence and differentiation revealed here indicate that the large form of N. fodiens does not correspond to a different species and instead represents an extreme case of size increase, of possible adaptive value, which deserves further investigation. informacion[at]ebd.csic.es: Balmori-de la Puente et al (2019) Size increase without genetic divergence in the Eurasian water shrew Neomys fodiens. Sci Rep doi:10.1038/s41598-019-53891-y


https://www.nature.com/articles/s41598-019-53891-y