News News

Human footprint and vulture mortality

Events of non-natural mortality in human-dominated landscapes are especially challenging for populations of large vertebrates with K strategies. Among birds, vultures are one of the most threatened groups experiencing sharp population declines due to non-natural mortality. Factors causing non-natural mortality are usually studied separately. However, the potential use of an integrated index able to predict large-scale mortality risks of avian scavengers could be especially useful for planning conservation strategies. Here, the Human Footprint index was used to examine the impact of landscape anthropization on the survival rates of 66 GPS-tagged adult Eurasian griffon vultures (Gyps fulvus) in two Spanish regions. Foraging in more anthropized areas resulted in a significantly higher individual mortality risk mainly due to collisions with vehicles, poisonings, electrocutions and fatalities with wind turbines. Mean yearly survival rates were estimated at 0.817 and 0.968 for individuals from the more and less anthropized regions, respectively. Additional research should investigate whether some vulture populations could be acting as sinks unnoticed due to metapopulation dynamics. From a broader point of view, this study shows that a straightforward Human Footprint was a useful index to predict the survival of top scavengers and can be highly applicable to planning large-scale conservation measures. informacion[at] Arrondo et al (2020) Landscape anthropization shapes the survival of a top avian scavenger. Biodivers Conserv.
Average (0 Votes)

Latest News Latest News


First Radiological Study of a Complete Dental Ontogeny Sequence of an Extinct Equid: Implications for Equidae Life History and Taphonomy

First Radiological Study of a Complete Dental Ontogeny Sequence of an Extinct Equid: Implications for Equidae Life History and Taphonomy

The sequence of cheek teeth mineralization, eruption, and replacement of an extinct horse species is here documented with radiological techniques for the first time thanks to the exceptional preservation of Hipparion sp. mandibles from Cerro de los Batallones (Madrid Basin, Spain). The sequence of dental ontogeny in mammals provides valuable insights about life history traits, such as the pace of growth, and about the mode of formation of fossiliferous assemblages. This study have determined that the order of permanent cheek teeth mineralization and eruption of hipparionine horses is m1, m2, (p2, p3), p4, m3. Cheek teeth mineralization timing of hipparionine horses coincides with the one observed in modern equids. In turn, there are differences in the eruption timing of the p4 and m3 between horses belonging to the Anchitheriinae and Hipparionini compared to equids of the Equus genus that might be related to the shorter durability of the deciduous tooth dp4 in anchitheriine and hipparionine horses and, more broadly, to an increased durability of equid teeth through their evolutionary history. Based on the dental eruption sequence, hipparionine horses are slow-growing, long-living mammals. The Hipparion sp. assemblage from Batallones-10 conforms to an attritional model, as individuals more vulnerable to natural mortality predominate. informacion[at] Domingo et al (2018) First radiological study of a complete dental ontogeny sequence of an extinct equid: implications for Equidae life history and taphonomy. Sci Rep 8: 8507