News News

The costs of mischoosing are not uniform across individuals

250

Matching habitat choice is a particular form of habitat selection based on self?assessment of local performance that offers individuals a means to optimize the match of phenotype to the environment. Despite the advantages of this mechanism in terms of increased local adaptation, examples from natural populations are extremely rare. One possible reason for the apparent rarity of matching habitat choice is that it might be manifest only in those segments of a population for which the cost of a phenotype–environment mismatch is high. To test this hypothesis, we used a breeding population of sockeye salmon (Oncorhynchus nerka) exposed to size-dependent predation risk by bears, and evaluated the costs of mischoosing in discrete groups (e.g. male versus females, and ocean?age 2 versus ocean?age 3) using reproductive life span as a measure of individual performance. Bear preference for larger fish, especially in shallow water, translates into a performance trade-off that sockeye salmon can potentially use to guide their settlement decisions. Consistent with matching habitat choice, we found that salmon of similar ocean?age and size tended to cluster together in sites of similar water depth. However, matching habitat choice was only favoured in 3?ocean females – the segment of the population most vulnerable to bear predation. This study illustrates the unequal relevance of matching habitat choice to different segments of a population, and suggests that ‘partial matching habitat choice' could have resulted in an underestimation of the actual prevalence of this mechanism in nature. informacion[at]ebd.csic.es: Camacho & Hendry (2020) Matching habitat choice: it's not for everyone. Oikos DOI 10.1111/oik.06932


https://onlinelibrary.wiley.com/doi/full/10.1111/oik.06932
Average (0 Votes)

Latest News Latest News

Back

Plant species abundance and phylogeny explain the structure of recruitment networks

Plant species abundance and phylogeny explain the structure of recruitment networks

Established plants can affect the recruitment of young plants, filtering out some and allowing the recruitment of others, with profound effects on plant community dynamics. Recruitment networks (RNs) depict which species recruit under which others. Here, whether species abundance and phylogenetic distance explain the structure of RNs across communities is investigated. The frequency of canopy–recruit interactions among woody plants in 10 forest assemblages to describe their RNs is estimated. For each RN, authors determined the functional form (linear, power or exponential) best describing the relationship of interaction frequency with three predictors: canopy species abundance, recruit species abundance and phylogenetic distance. Models were fitted with all combinations of predictor variables, from which RNs were simulated. The best functional form of each predictor was the same in most communities (linear for canopy species abundance, power for recruit species abundance and exponential for phylogenetic distance). The model including all predictor variables was consistently the best in explaining interaction frequency and showed the best performance in predicting RN structure. Results suggest that mechanisms related to species abundance are necessary but insufficient to explain the assembly of RNs. Evolutionary processes affecting phylogenetic divergence are critical determinants of RN structure. informacion[at]ebd.csic.es: Alcántara et al (2019) Plant species abundance and phylogeny explain the structure of recruitment networks. New Phytol doi: 10.1111/nph.15774

 


https://www.ncbi.nlm.nih.gov/pubmed/30843205