News News

Honeybee colonies have increased exponentially in the Mediterranean Basin

Evidence for pollinator declines largely originates from mid-latitude regions in North America and Europe. Geographical heterogeneity in pollinator trends combined with geographical biases in pollinator studies can produce distorted extrapolations and limit understanding of pollinator responses to environmental changes. In contrast with the declines experienced in some well-investigated European and North American regions, honeybees seem to have increased recently in some areas of the Mediterranean Basin. The Mediterranean Basin is home to approximately 3300 wild bee species, or approximately 87% of those occurring in the whole western Palaearctic region. Because honeybees can have negative impacts on wild bees, it was hypothesized that a biome-wide alteration in bee pollinator assemblages may be underway in the Mediterranean Basin involving a reduction in the relative number of wild bees. This hypothesis was tested using published quantitative data on bee pollinators of wild and cultivated plants from studies conducted between 1963 and 2017 in 13 countries from the European, African and Asian shores of the Mediterranean Sea. The density of honeybee colonies increased exponentially and wild bees were gradually replaced by honeybees in flowers of wild and cultivated plants. The proportion of wild bees at flowers was four times greater than that of honeybees at the beginning of the period, the proportions of both groups becoming roughly similar 50 years later. The Mediterranean Basin is a world biodiversity hotspot for wild bees and wild bee-pollinated plants, and the ubiquitous rise of honeybees to dominance as pollinators could in the long run undermine the diversity of plants and wild bees in the region. informacion[at]ebd.csic.es: Herrera (2020) Gradual replacement of wild bees by honeybees in flowers of the Mediterranean Basin over the last 50 years. Proc Royal Society B 287(1921). Doi 10.1098/rspb.2019.2657


https://royalsocietypublishing.org/doi/10.1098/rspb.2019.2657
Average (0 Votes)

Latest News Latest News

Back

Plant species abundance and phylogeny explain the structure of recruitment networks

Plant species abundance and phylogeny explain the structure of recruitment networks

Established plants can affect the recruitment of young plants, filtering out some and allowing the recruitment of others, with profound effects on plant community dynamics. Recruitment networks (RNs) depict which species recruit under which others. Here, whether species abundance and phylogenetic distance explain the structure of RNs across communities is investigated. The frequency of canopy–recruit interactions among woody plants in 10 forest assemblages to describe their RNs is estimated. For each RN, authors determined the functional form (linear, power or exponential) best describing the relationship of interaction frequency with three predictors: canopy species abundance, recruit species abundance and phylogenetic distance. Models were fitted with all combinations of predictor variables, from which RNs were simulated. The best functional form of each predictor was the same in most communities (linear for canopy species abundance, power for recruit species abundance and exponential for phylogenetic distance). The model including all predictor variables was consistently the best in explaining interaction frequency and showed the best performance in predicting RN structure. Results suggest that mechanisms related to species abundance are necessary but insufficient to explain the assembly of RNs. Evolutionary processes affecting phylogenetic divergence are critical determinants of RN structure. informacion[at]ebd.csic.es: Alcántara et al (2019) Plant species abundance and phylogeny explain the structure of recruitment networks. New Phytol doi: 10.1111/nph.15774

 


https://www.ncbi.nlm.nih.gov/pubmed/30843205