News News

Impairment of mixed melanin-based pigmentation in parrots

Parrots and allies (Order Psittaciformes) have evolved an exclusive capacity to synthesize polyene pigments called psittacofulvins at feather follicles, which allows them to produce a striking diversity of pigmentation phenotypes. Melanins are polymers constituting the most abundant pigments in animals, and the sulphurated form (pheomelanin) produces colors that are similar to those produced by psittacofulvins. However, the differential contribution of these pigments to psittaciform phenotypic diversity has not been investigated. Given the color redundancy, and physiological limitations associated to pheomelanin synthesis, this study assumed that the latter would be avoided by psittaciform birds. This hypothesis was tested by using Raman spectroscopy to identify pigments in feathers exhibiting colors suspicious of being produced by pheomelanin (i.e., dull red, yellow and grey- and green-brownish) in 26 species from the three main lineages of Psittaciformes. The non-sulphurated melanin form (eumelanin) were detected in black, grey and brown plumage patches, and psittacofulvins in red, yellow and green patches, but no evidence of pheomelanin was found. As natural melanins are assumed to be composed of eumelanin and pheomelanin in varying ratios, these results represent the first report of impairment of mixed melanin-based pigmentation in animals. Given that psittaciforms also avoid the uptake of circulating carotenoid pigments, these birds seem to have evolved a capacity to avoid functional redundancy between pigments, likely by regulating follicular gene expression. The study provides the first vibrational characterization of different psittacofulvin-based colors and thus helps to determine the relative polyene chain length in these pigments, which is related to their antireductant protection activity. informacion[at]ebd.csic.es: Neves et al (2020) Impairment of mixed melanin-based pigmentation in parrots. J Experim Biol. DOI 10.1242/jeb.225912


https://jeb.biologists.org/content/early/2020/05/08/jeb.225912
Average (0 Votes)

Latest News Latest News

Back

Plant species abundance and phylogeny explain the structure of recruitment networks

Plant species abundance and phylogeny explain the structure of recruitment networks

Established plants can affect the recruitment of young plants, filtering out some and allowing the recruitment of others, with profound effects on plant community dynamics. Recruitment networks (RNs) depict which species recruit under which others. Here, whether species abundance and phylogenetic distance explain the structure of RNs across communities is investigated. The frequency of canopy–recruit interactions among woody plants in 10 forest assemblages to describe their RNs is estimated. For each RN, authors determined the functional form (linear, power or exponential) best describing the relationship of interaction frequency with three predictors: canopy species abundance, recruit species abundance and phylogenetic distance. Models were fitted with all combinations of predictor variables, from which RNs were simulated. The best functional form of each predictor was the same in most communities (linear for canopy species abundance, power for recruit species abundance and exponential for phylogenetic distance). The model including all predictor variables was consistently the best in explaining interaction frequency and showed the best performance in predicting RN structure. Results suggest that mechanisms related to species abundance are necessary but insufficient to explain the assembly of RNs. Evolutionary processes affecting phylogenetic divergence are critical determinants of RN structure. informacion[at]ebd.csic.es: Alcántara et al (2019) Plant species abundance and phylogeny explain the structure of recruitment networks. New Phytol doi: 10.1111/nph.15774

 


https://www.ncbi.nlm.nih.gov/pubmed/30843205