News News

Impact of fisheries on sea turtles

The bycatch of sea turtles by industrial fisheries is receiving an increasing attention in recent years due to the high impact it causes on these endangered species. This issue was evaluated in southern Spain waters that harbors an important feeding ground of loggerhead and leatherback turtles, including the endangered Eastern Atlantic loggerhead population. To quantify the impact that different fisheries represents to sea turtles, 272 fishermen answered to detailed illustrated questionnaires in all the main ports of Andalusia and Murcia (Spain) during 2014. This study has updated the knowledge of turtle bycatch in the southwestern Mediterranean revealing a widespread impact of fisheries on sea turtles. Fishermen recognized an annual catch of 2.3 turtles per boat. Considering the census of industrial fishing boats in the study area (1182), more than 2840 sea turtles could be bycaught per year in the study area. Most of captures (96.2%) were produced during the summer. These results suggest a severe impact of most of legal fisheries (surface longline, pursue seine, trawling and small scale fisheries) on loggerhead feeding grounds in the southwestern Mediterranean. Fishermen suggests that drift fishing conducted by foreign or illegal fishermen and almadrabas are also causing a significant bycatch of turtles. Several measures such as reviewing compliance of current fishing and environmental regulations, modifying turtle technics to reduce turtle bycatch (e.g. reduction of the use of squid as bait and disposal of hooks deeper in the water column), facilitating the rescue and handle of wound turtles and their transport to the port for recovery, and recognizing the efforts of anglers to perform a more sustainable fishing, are recommended to mitigate this impact. informacion[at]ebd.csic.es: Marco et al (2020) Sea turtle bycatch by different types of fisheries in southern Spain. Basic and Applied Herpetology https://doi.org/10.11160/bah.187


http://ojs.herpetologica.org/index.php/bah/article/view/187
Average (0 Votes)

Latest News Latest News

Back

Dispersal capacity explains the evolution of lifespan variability

Dispersal capacity explains the evolution of lifespan variability

The evolutionary explanation for lifespan variation is still based on the antagonistic pleiotropy hypothesis, which has been challenged by several studies. Alternative models assume the existence of genes that favor aging and group benefits at the expense of reductions in individual lifespans. Here a new model is proposed without making such assumptions. It considers that limited dispersal can generate, through reduced gene flow, spatial segregation of individual organisms according to lifespan. Individuals from subpopulations with shorter lifespan could thus resist collapse in a growing population better than individuals from subpopulations with longer lifespan, hence reducing lifespan variability within species. As species that disperse less may form more homogeneous subpopulations regarding lifespan, this may lead to a greater capacity to maximize lifespan that generates viable subpopulations, therefore creating negative associations between dispersal capacity and lifespan across species. This model was tested with individual-based simulations and a comparative study using empirical data of maximum lifespan and natal dispersal distance in 26 species of birds, controlling for the effects of genetic variability, body size, and phylogeny. Simulations resulted in maximum lifespans arising from lowest dispersal probabilities, and comparative analyses resulted in a negative association between lifespan and natal dispersal distance, thus consistent with our model. These findings therefore suggest that the evolution of lifespan variability is the result of the ecological process of dispersal. informacion[at]ebd.csic.es Galván & Møller (2018) Dispersal capacity explains the evolution of lifespan variability Ecol Evol https://doi.org/10.1002/ece3.4073


https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.4073