News News

Impact of fisheries on sea turtles

The bycatch of sea turtles by industrial fisheries is receiving an increasing attention in recent years due to the high impact it causes on these endangered species. This issue was evaluated in southern Spain waters that harbors an important feeding ground of loggerhead and leatherback turtles, including the endangered Eastern Atlantic loggerhead population. To quantify the impact that different fisheries represents to sea turtles, 272 fishermen answered to detailed illustrated questionnaires in all the main ports of Andalusia and Murcia (Spain) during 2014. This study has updated the knowledge of turtle bycatch in the southwestern Mediterranean revealing a widespread impact of fisheries on sea turtles. Fishermen recognized an annual catch of 2.3 turtles per boat. Considering the census of industrial fishing boats in the study area (1182), more than 2840 sea turtles could be bycaught per year in the study area. Most of captures (96.2%) were produced during the summer. These results suggest a severe impact of most of legal fisheries (surface longline, pursue seine, trawling and small scale fisheries) on loggerhead feeding grounds in the southwestern Mediterranean. Fishermen suggests that drift fishing conducted by foreign or illegal fishermen and almadrabas are also causing a significant bycatch of turtles. Several measures such as reviewing compliance of current fishing and environmental regulations, modifying turtle technics to reduce turtle bycatch (e.g. reduction of the use of squid as bait and disposal of hooks deeper in the water column), facilitating the rescue and handle of wound turtles and their transport to the port for recovery, and recognizing the efforts of anglers to perform a more sustainable fishing, are recommended to mitigate this impact. informacion[at]ebd.csic.es: Marco et al (2020) Sea turtle bycatch by different types of fisheries in southern Spain. Basic and Applied Herpetology https://doi.org/10.11160/bah.187


http://ojs.herpetologica.org/index.php/bah/article/view/187
Average (0 Votes)

Latest News Latest News

Back

Condition-dependence of pheomelanin-based coloration in nuthatches Sitta europaea suggests a detoxifying function: implications for the evolution of juvenile plumage patterns

Condition-dependence of pheomelanin-based coloration in nuthatches Sitta europaea suggests a detoxifying function: implications for the evolution of juvenile plumage patterns

Adult-like juvenile plumage patterns often signal genotypic quality to parents. During adulthood, the same patterns often signal quality to mates. This has led to assume that adult-like juvenile plumage is a developmental consequence of sexual selection operating in adults. Many of these patterns are produced by the pigment pheomelanin, whose synthesis may help remove toxic excess cysteine. Excess cysteine is likely to arise under conditions of relatively low stress, such as those experienced by nestling birds. Thus, adult-like plumage may be advantageous for juveniles if produced by pheomelanin. In the Eurasian nuthatch Sitta europaea, juveniles are sexually dichromatic and identical to adults. Nestling nuthatches in poorer condition develop more intense pheomelanin-based feathers, indicating greater pigment production. The same is not observed in adults. This is contrary to a function related to signaling quality and instead suggests that, at least in the Eurasian nuthatch, adult-like juvenile plumage has evolved because of the detoxifying function of pheomelanin-based pigmentation. Given the prevalence of colors typically conferred by pheomelanin in juvenile plumage patterns, the detoxifying capacity of pheomelanin under low stress levels should be considered as an explanation for the evolution of both adult-like and distinctively juvenile plumage patterns. informacion[at]ebd.csic.es: Galván (2017) Condition-dependence of pheomelanin-based coloration in nuthatches Sitta europaea suggests a detoxifying function: implications for the evolution of juvenile plumage patterns. Sci Rep doi:10.1038/s41598-017-09771-4


https://www.nature.com/articles/s41598-017-09771-4