News News

Argentine ants harm nestlings of the blue tit

The consequences of ant invasions on ecosystems may only become apparent after long periods. In addition, predicting how sensitive native fauna will respond is only possible if the underlying proximate mechanisms of their impact are identified. The attraction of the native and invasive ant community to artificial bird nests was studied, together with reproduction of a wild native songbird over five consecutive breeding seasons in relation to the presence of an invasive ant species. Biometric, reproductive and individual blood parameters of great tits Parus major breeding in invaded as compared to uninvaded sites by Argentine ants Linepithema humile were analysed. Great tits bred preferably in uninvaded territories by the Argentine ant. Moreover, Argentine ants were more abundant at nests in invaded sites, than any native ant species were at uninvaded sites. Further, Argentine ants recruited at the artificial nests more intensively and responded to a larger variety of nest (intact eggs, cracked eggs, faeces, and cracked eggs plus faeces) contents than native species. Although breeding success and adult condition did not vary in relation to invasion status, offspring quality was negatively affected by the presence of Argentine ants. Nestlings reared in invaded sites were lighter, with lower wing/tarsus length ratio and had a reduced nutritional condition and altered oxidative stress balance as measured from several blood parameters. The interspersed distribution and small distance between invaded versus uninvaded territories suggest that ant presence affects nestling condition through direct interference at the nest. These results highlight the importance of evaluating the proximate effects like physiological parameters of the native fauna, when studying invasive ant-native bird interactions. informacion[at] Álvarez et al (2020) Breeding consequences for a songbird nesting in Argentine ant' invaded land. Biol Invasions
Average (0 Votes)

Latest News Latest News


Trait evolution across the tree?of?life of freshwater macroinvertebrates

Trait evolution across the tree?of?life of freshwater macroinvertebrates

The rates of species and trait diversification vary across the Tree?of?Life and over time. Whereas species richness and clade age generally are decoupled, the correlation of accumulated trait diversity of clades (trait disparity) with clade age remains poorly explored. Total trait disparity may be coupled with clade age if the growth of disparity (disparification) within and across clades is continuous with time in an additive niche expansion process (linear?cumulative model), or alternatively if the rate of trait disparification varies over time and decreases as ecological space becomes gradually saturated (disparity?dependent model). Using a clock?calibrated phylogenetic tree for 143 freshwater macroinvertebrate families and richness and trait databases covering more than 6400 species, trait disparity in 18 independent clades that successively transitioned to freshwater ecosystems were measured and its relation with clade age was analyzed. A positive correlation between clade age and total disparity within clades was found, but no relationship for most individual traits. Traits unique to freshwater lifestyle were highly variable within older clades, while disparity in younger clades shifted towards partially terrestrial lifestyles and saline tolerance to occupy habitats previously inaccessible or underutilized. These results argue that constraints from incumbent lineages limit trait disparity in younger clades that evolved for filling unoccupied regions of the trait space, which suggests that trait disparification may follow a disparity?dependent model. Overall, an empirical pattern is provided that reveals the potential of the disparity?dependent model for understanding fundamental processes shaping trait dynamics across the Tree?of?Life. informacion[at] Múrria et al (2018) Ecological constraints from incumbent clades drive trait evolution across the tree?of?life of freshwater macroinvertebrates. Ecography 41(7): 1049-1063