News News

Oversea migration of white storks through the water barriers of the straits of Gibraltar

Soaring landbirds typically exploit atmospheric uplift as they fly overland, displaying a highly effective energy-saving locomotion. However, large water bodies lack thermal updrafts, potentially becoming ecological barriers that hamper migration. The effects of a sea surface on the migratory performance of GPS-tagged white storks (Ciconia ciconia) were assessed before, during and after they crossed the straits of Gibraltar. Oversea movements involved only flapping and gliding and were faster, traversed in straighter, descending trajectories and resulted in higher movement-related energy expenditure levels than overland, supporting the water barrier hypothesis. Overland movements at both sides of the sea straits resulted in tortuous routes and ascending trajectories with pre-crossing flights showing higher elevations and more tortuous routes than post-crossing, thus supporting the barrier negotiation hypothesis. Individual positions at both ends of the sea narrow were predicted by zonal winds and storks´ location at entry in the European hinterland, and birds did not show compensational movements overland in anticipation to subsequent wind displacements oversea. The length of the water narrow at departure shore, the elevation therein and the winds on route affected major components of sea crossing performance (such as distances and times overwater, minimum elevations, climb angles, speeds and energy expenditure), supporting the departure position and oversea winds hypotheses. In summary, this study provides a prime example at high temporal resolution of how birds adjust their behavior and physiology as they interact with the changing conditions of the travelling medium, reallocating resources and modifying their movement to overcome an ecological barrier. informacion[at]ebd.csic.es: Blas et al (2020) Overland and oversea migration of white storks through the water barriers of the straits of Gibraltar. Scientific Reports 10: 20760. DOI 10.1038/s41598-020-77273-x. See Spanish press release


www.nature.com/articles/s41598-020-77273-x
Average (0 Votes)

Latest News Latest News

Back

Trait evolution across the tree?of?life of freshwater macroinvertebrates

Trait evolution across the tree?of?life of freshwater macroinvertebrates

The rates of species and trait diversification vary across the Tree?of?Life and over time. Whereas species richness and clade age generally are decoupled, the correlation of accumulated trait diversity of clades (trait disparity) with clade age remains poorly explored. Total trait disparity may be coupled with clade age if the growth of disparity (disparification) within and across clades is continuous with time in an additive niche expansion process (linear?cumulative model), or alternatively if the rate of trait disparification varies over time and decreases as ecological space becomes gradually saturated (disparity?dependent model). Using a clock?calibrated phylogenetic tree for 143 freshwater macroinvertebrate families and richness and trait databases covering more than 6400 species, trait disparity in 18 independent clades that successively transitioned to freshwater ecosystems were measured and its relation with clade age was analyzed. A positive correlation between clade age and total disparity within clades was found, but no relationship for most individual traits. Traits unique to freshwater lifestyle were highly variable within older clades, while disparity in younger clades shifted towards partially terrestrial lifestyles and saline tolerance to occupy habitats previously inaccessible or underutilized. These results argue that constraints from incumbent lineages limit trait disparity in younger clades that evolved for filling unoccupied regions of the trait space, which suggests that trait disparification may follow a disparity?dependent model. Overall, an empirical pattern is provided that reveals the potential of the disparity?dependent model for understanding fundamental processes shaping trait dynamics across the Tree?of?Life. informacion[at]ebd.csic.es: Múrria et al (2018) Ecological constraints from incumbent clades drive trait evolution across the tree?of?life of freshwater macroinvertebrates. Ecography 41(7): 1049-1063 https://www.youtube.com/watch?v=_1tEETP9G84 https://doi.org/10.1111/ecog.02886


https://www.youtube.com/watch?v=_1tEETP9G84