News News

For a better production, agriculture areas need to recover at least 20% of natural habitat

International agreements aim to conserve 17% of Earth's land area by 2020 but include no area-based conservation targets within the working landscapes that support human needs through farming, ranching, and forestry. Through a review of country-level legislation, this study found that just 38% of countries have minimum area requirements for conserving native habitats within working landscapes. The study argues for increasing native habitats to at least 20% of working landscape area where it is below this minimum. Such target has benefits for food security, nature's contributions to people, and the connectivity and effectiveness of protected area networks in biomes in which protected areas are underrepresented. Other urgings of the review include maintaining native habitat at higher levels where it currently exceeds the 20% minimum, and a literature review shows that even more than 50% native habitat restoration is needed in particular landscapes. Including a >20% native habitats within working landscapes restoration target offers an unrivaled opportunity to simultaneously enhance biodiversity, food security and quality of life. The post-2020 Global Biodiversity Framework is an opportune moment to include a minimum habitat restoration target for working landscapes that contributes to, but does not compete with, initiatives for expanding protected areas, the UN Decade on Ecosystem Restoration (2021–2030) and the UN Sustainable Development Goals. informacion[at]ebd.csic.es: Garibaldi et al (2020) Working landscapes need at least 20% native habitat. Conserv Letter DOI: 10.1111/conl.12773


https://conbio.onlinelibrary.wiley.com/doi/full/10.1111/conl.12773
Average (0 Votes)

Latest News Latest News

Back

The functional connectivity network of wintering gulls links seven habitat types, acting ricefields as the central node

The functional connectivity network of wintering gulls links seven habitat types, acting ricefields as the central node

The lesser black-backed gull is now the second most abundant wintering waterbird in Andalusian wetlands. Many birds are fitted with GPS loggers on their breeding grounds in northern Europe, and using 42 tagged individuals we studied the connectivity network between different sites and habitats in Andalusia. Thirty seven principal sites (nodes) from seven different habitats (ricefields, landfills, natural lakes, reservoirs, fish ponds, coastal marshes and ports) were identified. By analysing nearly 6,000 gull flights, it was found that Doñana ricefields are the most important node in the network, but that 90% of flights are made between a wetland and a landfill. The 37 nodes are split into 10 functional units (modules) in which gulls tend to fly daily and up to 60 km between a wetland roost site, and a landfill feeding site. This network allows to predict how gulls contribute to seed dispersal, wetland eutrophication, and the spread of pathogens such as antibiotic resistant bacteria. informacion[at]ebd.csic.es: Martín-Vélez et al (2019) Functional connectivity network between terrestrial and aquatic habitats by a generalist waterbird, and implications for biovectoring. Science Total Environm 107: 135886 DOI 10.1016/j.scitotenv.2019.135886


https://www.sciencedirect.com/science/article/pii/S0048969719358814?via%3Dihub#ab0005