News News

Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones

The most common ecological response to climate change is the shifts in species distribution ranges. Nevertheless, landscape fragmentation compromises the ability of limited dispersal species to move following these climate changes. Building connected environments that enable species to track climate changes is an ultimate goal for biodiversity conservation. An experiment was conducted to determine if electric power transmission lines could be transformed in a continental network of biodiversity reserves for small animals. The study analysed if the management of the habitat located inside the base of the transmission electric towers (providing refuge and planting seedlings of native shrub) allowed to increase local richness of target species (i.e., small mammals and some invertebrates' groups). The results confirmed that by modifying the base of the electric transmission towers density and diversity of several species of invertebrates and small mammals increased as well as number of birds and bird species, increasing local biodiversity. The study suggests that modifying the base of the electric towers would potentially facilitate the connection of fragmented populations. This idea would be easily applicable in any transmission line network anywhere around the world, making it possible for the first time to build up continental scale networks of connectivity. informacion[at]ebd.csic.es: Ferrer et al (2020) Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones? Diversity 12(11): 439; https://doi.org/10.3390/d12110439

Read press release (Spanish)


https://www.mdpi.com/1424-2818/12/11/439
Average (0 Votes)

Latest News Latest News

Back

Dynamic signalling in the greater flamingo

Dynamic signalling in the greater flamingo

Colourful plumage is typical of males in species with conventional sex roles, in which females care for offspring and males compete for females, as well as in many monogamous species in which both sexes care for offspring. Reversed sexual dichromatism—more colourful females than males—is predominant in species with sex role reversal. In the latter species, males care for offspring and females compete for mates, the mating system is mainly polyandrous and there is reversed size dimorphism—females are larger than males. Here, a case of reversed dichromatism, in the greater flamingo Phoenicopterus roseus is documented, in which there is no sex role reversal and no reversed size dimorphism. Although theoretical models postulate that cases of reversed dichromatism should be rare among monogamous ornamented birds, these findings show that the use of cosmetics might be a mechanism for the occurrence of more ornamented females than males. Indeed, the concentrations of carotenoids in the uropygial secretions used as make-up were higher in females than in males. Apparently, there was a trade-off between coloration and antioxidant defence, as the concentrations of carotenoids in the uropygial secretions were lower during chick provisioning than in other periods, contrary to those in plasma. In this system, the application of make-up would act as a dynamic signal, which would allow a rapid reallocation of resources used for signalling among functions depending on needs. Cases like this may have evolved to signal the ability to provide parental care when females are more physiologically stressed than males. informacion[at]ebd.csic.es: Amat et al (2018) Dynamic signalling using cosmetics may explain the reversed sexual dichromatism in the monogamous greater flamingo. Behav Ecol Sociobiol 72:135 Doi 10.1002/ece3.4335. https://doi.org/10.1007/s00265-018-2551-1


https://link.springer.com/article/10.1007%2Fs00265-018-2551-1#