News News

Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones

The most common ecological response to climate change is the shifts in species distribution ranges. Nevertheless, landscape fragmentation compromises the ability of limited dispersal species to move following these climate changes. Building connected environments that enable species to track climate changes is an ultimate goal for biodiversity conservation. An experiment was conducted to determine if electric power transmission lines could be transformed in a continental network of biodiversity reserves for small animals. The study analysed if the management of the habitat located inside the base of the transmission electric towers (providing refuge and planting seedlings of native shrub) allowed to increase local richness of target species (i.e., small mammals and some invertebrates' groups). The results confirmed that by modifying the base of the electric transmission towers density and diversity of several species of invertebrates and small mammals increased as well as number of birds and bird species, increasing local biodiversity. The study suggests that modifying the base of the electric towers would potentially facilitate the connection of fragmented populations. This idea would be easily applicable in any transmission line network anywhere around the world, making it possible for the first time to build up continental scale networks of connectivity. informacion[at]ebd.csic.es: Ferrer et al (2020) Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones? Diversity 12(11): 439; https://doi.org/10.3390/d12110439

Read press release (Spanish)


https://www.mdpi.com/1424-2818/12/11/439
Average (0 Votes)

Latest News Latest News

Back

Molecular vibration as a novel explanatory mechanism for the expression of animal colouration

Molecular vibration as a novel explanatory mechanism for the expression of animal colouration

Animal colouration is characterized by the concentration of pigments in integumentary structures and by the nanoscale arrangement of constitutive elements. However, the influence of molecular vibration on colour expression has been overlooked in biology. Molecular vibration occurs in the infrared spectral region, but vibrational and electronic properties can influence each other. Thus, the vibration of pigment molecules may also affect their absorption properties and the resulting colours. For the first time the relative contribution of molecular vibration (by means of Raman spectroscopy) and concentration (by means of HPLC) of melanin polymers, the most common animal pigments, was calculated to generate diversity in plumage colour in 47 species of birds. Vibrational characteristics explained >9 times more variance in colour expression than the concentration of melanins. Additionally, melanin Raman spectra was modelled on the basis of the chemical structure of their constituent monomers and calculated the Huang-Rhys factors for each vibrational mode, which indicate the contribution of these modes to the electronic spectra responsible for the resulting colours. High Huang-Rhys factors frequently coincided with the vibrational modes of melanin monomers. Results can be explained by the influence of molecular vibration on the absorption properties of melanins. The colour of organisms may thus mainly result from the vibrational properties of their molecules and only residually from their concentration. As a given melanin concentration can give rise to different colours because different structural melanin conformations can present different vibrational characteristics, vibrational effects may favour phenotypic plasticity and thus constitute an important evolutionary force. informacion[at]ebd.csic.es: Galvan et al (2018) Molecular vibration as a novel explanatory mechanism for the expression of animal colouration. Integrative Biol. Doi 10.1039/C8IB00100F


http://pubs.rsc.org/en/content/articlelanding/2018/ib/c8ib00100f#!divAbstract