News News

Human impact has contributed to the decline of the Eurasion lynx

Disentangling the contribution of long?term evolutionary processes and recent anthropogenic impacts to current genetic patterns of wildlife species is key to assessing genetic risks and designing conservation strategies. Eighty whole nuclear genomes and 96 mitogenomes from populations of the Eurasian lynx covering a range of conservation statuses, climatic zones and subspecies across Eurasia were used to infer the demographic history, reconstruct genetic patterns, and discuss the influence of long?term isolation and more recent human?driven changes. Results show that Eurasian lynx populations shared a common history until 100,000 years ago, when Asian and European populations started to diverge and both entered a period of continuous and widespread decline, with western populations, except Kirov (Russia), maintaining lower effective sizes than eastern populations. Population declines and increased isolation in more recent times probably drove the genetic differentiation between geographically and ecologically close westernmost European populations. By contrast, and despite the wide range of habitats covered, populations are quite homogeneous genetically across the Asian range, showing a pattern of isolation by distance and providing little genetic support for the several proposed subspecies. Mitogenomic and nuclear divergences and population declines starting during the Late Pleistocene can be mostly attributed to climatic fluctuations and early human influence, but the widespread and sustained decline since the Holocene is more probably the consequence of anthropogenic impacts which intensified in recent centuries, especially in western Europe. Genetic erosion in isolated European populations and lack of evidence for long?term isolation argue for the restoration of lost population connectivity between European and Asian poulations. informacion[at]ebd.csic.es: Lucena-Perez et al (2020). Genomic patterns in the widespread Eurasian lynx shaped by Late Quaternary climatic fluctuations and anthropogenic impacts. MOL ECOL 29(4) DOI 10.1111/mec.15366


https://onlinelibrary.wiley.com/doi/full/10.1111/mec.15366
Average (0 Votes)

Latest News Latest News

Back

Molecular vibration as a novel explanatory mechanism for the expression of animal colouration

Molecular vibration as a novel explanatory mechanism for the expression of animal colouration

Animal colouration is characterized by the concentration of pigments in integumentary structures and by the nanoscale arrangement of constitutive elements. However, the influence of molecular vibration on colour expression has been overlooked in biology. Molecular vibration occurs in the infrared spectral region, but vibrational and electronic properties can influence each other. Thus, the vibration of pigment molecules may also affect their absorption properties and the resulting colours. For the first time the relative contribution of molecular vibration (by means of Raman spectroscopy) and concentration (by means of HPLC) of melanin polymers, the most common animal pigments, was calculated to generate diversity in plumage colour in 47 species of birds. Vibrational characteristics explained >9 times more variance in colour expression than the concentration of melanins. Additionally, melanin Raman spectra was modelled on the basis of the chemical structure of their constituent monomers and calculated the Huang-Rhys factors for each vibrational mode, which indicate the contribution of these modes to the electronic spectra responsible for the resulting colours. High Huang-Rhys factors frequently coincided with the vibrational modes of melanin monomers. Results can be explained by the influence of molecular vibration on the absorption properties of melanins. The colour of organisms may thus mainly result from the vibrational properties of their molecules and only residually from their concentration. As a given melanin concentration can give rise to different colours because different structural melanin conformations can present different vibrational characteristics, vibrational effects may favour phenotypic plasticity and thus constitute an important evolutionary force. informacion[at]ebd.csic.es: Galvan et al (2018) Molecular vibration as a novel explanatory mechanism for the expression of animal colouration. Integrative Biol. Doi 10.1039/C8IB00100F


http://pubs.rsc.org/en/content/articlelanding/2018/ib/c8ib00100f#!divAbstract