News News

Restored and artificial wetlands do not support the same waterbird functional diversity as natural wetlands

The restoration of degraded areas and the creation of artificial ecosystems have partially compensated for the continuing loss of natural wetlands. However, the success of these wetlands in terms of the capacity of supporting biodiversity and ecosystem functions is unclear. Natural, restored, and artificially created wetlands present within the Doñana protected area were compared to evaluate if they are equivalent in terms of waterbird functional trait diversity and composition. Functional diversity measures and functional group species richness describing species diet, body mass, and foraging techniques were modelled in 20 wetlands in wintering and breeding seasons. Artificial wetlands constructed for conservation failed to reach the functional diversity of natural and restored wetlands. Unexpectedly, artificial ponds constructed for fish production performed better, and even exceeded natural wetlands for functional richness during winter. Fish ponds stood out as having a unique functional composition, connected with an increase in richness of opportunistic gulls and a decrease in species sensitive to high salinity. Overall, the functional structure of breeding communities was more affected by wetland type than wintering communities. These findings suggest that compensating the loss of natural wetlands with restored and artificial wetlands results in systems with altered waterbird?supported functions. Protection of natural Mediterranean wetlands is vital to maintain the original diversity and composition of waterbird functional traits. Furthermore, restoration must be prioritised over the creation of artificial wetlands, which, even when intended for conservation, may not provide an adequate replacement. informacion[at]ebd.csic.es: Almeida et al. (2020) Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshwater Biology DOI 10.1111/fwb.13618


https://onlinelibrary.wiley.com/doi/full/10.1111/fwb.13618
Average (0 Votes)

Latest News Latest News

Back

Nocturnal birds could communicate through the fluorescence of their feathers

Nocturnal birds could communicate through the fluorescence of their feathers

Many nocturnal animals, including invertebrates such as scorpions and a variety of vertebrate species, including toadlets, flying squirrels, owls, and nightjars, emit bright fluorescence under ultraviolet light. However, the ecological significance of this unique coloration so attached to nocturnality remains obscure. An intensively studied population of migratory red-necked nightjars (Caprimulgus ruficollis) was used to investigate inter-individual variation in porphyrin-based pink fluorescence according to sex, age, body condition, time of the year, and the extent of white plumage patches known to be involved in sexual communication. Males and females exhibited a similar extent of pink fluorescence on the under-side of the wings in both juvenile and adult birds, but males had larger white patches than females. Body condition predicted the extent of pink fluorescence in juvenile birds, but not in adults. On average, the extent of pink fluorescence in juveniles increased by ca. 20% for every 10-g increase in body mass. For both age classes, there was a slight seasonal increase (1–4% per week) in the amount of fluorescence. These results suggest that the porphyrin-based coloration of nightjars might signal individual quality, at least in their first potential breeding season, although the ability of these and other nocturnal birds to perceive fluorescence remains to be unequivocally proven. información[at]ebd.csic.es: Camacho et al (2019) Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars (Caprimulgus ruficollis). Scientific Reports. DOI: 10.1038/s41598-019-55522-y


https://www.nature.com/articles/s41598-019-55522-y