News News

The costs of mischoosing are not uniform across individuals


Matching habitat choice is a particular form of habitat selection based on self?assessment of local performance that offers individuals a means to optimize the match of phenotype to the environment. Despite the advantages of this mechanism in terms of increased local adaptation, examples from natural populations are extremely rare. One possible reason for the apparent rarity of matching habitat choice is that it might be manifest only in those segments of a population for which the cost of a phenotype–environment mismatch is high. To test this hypothesis, we used a breeding population of sockeye salmon (Oncorhynchus nerka) exposed to size-dependent predation risk by bears, and evaluated the costs of mischoosing in discrete groups (e.g. male versus females, and ocean?age 2 versus ocean?age 3) using reproductive life span as a measure of individual performance. Bear preference for larger fish, especially in shallow water, translates into a performance trade-off that sockeye salmon can potentially use to guide their settlement decisions. Consistent with matching habitat choice, we found that salmon of similar ocean?age and size tended to cluster together in sites of similar water depth. However, matching habitat choice was only favoured in 3?ocean females – the segment of the population most vulnerable to bear predation. This study illustrates the unequal relevance of matching habitat choice to different segments of a population, and suggests that ‘partial matching habitat choice' could have resulted in an underestimation of the actual prevalence of this mechanism in nature. informacion[at] Camacho & Hendry (2020) Matching habitat choice: it's not for everyone. Oikos DOI 10.1111/oik.06932
Average (0 Votes)

Latest News Latest News


Nocturnal birds could communicate through the fluorescence of their feathers

Nocturnal birds could communicate through the fluorescence of their feathers

Many nocturnal animals, including invertebrates such as scorpions and a variety of vertebrate species, including toadlets, flying squirrels, owls, and nightjars, emit bright fluorescence under ultraviolet light. However, the ecological significance of this unique coloration so attached to nocturnality remains obscure. An intensively studied population of migratory red-necked nightjars (Caprimulgus ruficollis) was used to investigate inter-individual variation in porphyrin-based pink fluorescence according to sex, age, body condition, time of the year, and the extent of white plumage patches known to be involved in sexual communication. Males and females exhibited a similar extent of pink fluorescence on the under-side of the wings in both juvenile and adult birds, but males had larger white patches than females. Body condition predicted the extent of pink fluorescence in juvenile birds, but not in adults. On average, the extent of pink fluorescence in juveniles increased by ca. 20% for every 10-g increase in body mass. For both age classes, there was a slight seasonal increase (1–4% per week) in the amount of fluorescence. These results suggest that the porphyrin-based coloration of nightjars might signal individual quality, at least in their first potential breeding season, although the ability of these and other nocturnal birds to perceive fluorescence remains to be unequivocally proven. información[at] Camacho et al (2019) Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars (Caprimulgus ruficollis). Scientific Reports. DOI: 10.1038/s41598-019-55522-y