News News

Human footprint and vulture mortality

Events of non-natural mortality in human-dominated landscapes are especially challenging for populations of large vertebrates with K strategies. Among birds, vultures are one of the most threatened groups experiencing sharp population declines due to non-natural mortality. Factors causing non-natural mortality are usually studied separately. However, the potential use of an integrated index able to predict large-scale mortality risks of avian scavengers could be especially useful for planning conservation strategies. Here, the Human Footprint index was used to examine the impact of landscape anthropization on the survival rates of 66 GPS-tagged adult Eurasian griffon vultures (Gyps fulvus) in two Spanish regions. Foraging in more anthropized areas resulted in a significantly higher individual mortality risk mainly due to collisions with vehicles, poisonings, electrocutions and fatalities with wind turbines. Mean yearly survival rates were estimated at 0.817 and 0.968 for individuals from the more and less anthropized regions, respectively. Additional research should investigate whether some vulture populations could be acting as sinks unnoticed due to metapopulation dynamics. From a broader point of view, this study shows that a straightforward Human Footprint was a useful index to predict the survival of top scavengers and can be highly applicable to planning large-scale conservation measures. informacion[at]ebd.csic.es: Arrondo et al (2020) Landscape anthropization shapes the survival of a top avian scavenger. Biodivers Conserv. https://doi.org/10.1007/s10531-020-01942-6


https://link.springer.com/article/10.1007%2Fs10531-020-01942-6#
Average (0 Votes)

Latest News Latest News

Back

Cities may save some threatened species but not their ecological functions

Cities may save some threatened species but not their ecological functions

Urbanization is one of the main causes of biodiversity loss worldwide. Wildlife responses to urbanization, however, are greatly variable and, paradoxically, some threatened species may achieve much larger populations in urban than in natural habitats. Urban conservation hotspots may therefore help some species avoid regional or even global extinctions, but not conserve their often overlooked ecological functions in the wild. This issue is being addressed in this study by using two species of globally threatened parrots occurring in the Dominican Republic: the Hispaniolan amazon (Amazona ventralis) and the Hispaniolan parakeet (Psittacara chloropterus). A large-scale roadside survey was conducted in June 2017 across the country to estimate the relative abundance of parrots in natural habitats, rural habitats, and cities. Relative abundances of both parrot species were negligible in rural areas and very low in natural habitats. They were generally between one and two orders of magnitude lower than that of congeneric species inhabiting other Neotropical ecosystems. Relative abundances were six times higher in cities than in natural habitats in the case of the Hispaniolan parakeet and three times higher in the case of the Hispaniolan amazon. People indicated hunting for a source food and to mitigate crop damage as causes of parrot population declines, and a vigorous illegal trade for parrots (131 individuals recorded, 75% of them poached very recently), mostly obtained from protected areas where the last small wild populations remain. Parrots were observed foraging on 19 plant species from 11 families, dispersing the fruits of 14 species by carrying them in their beaks and consuming them in distant perching trees. They discarded undamaged mature seeds, with the potential to germinate, in 99.5% of cases (n = 306), and minimum dispersal distances ranged from 8 to 155 m (median = 37 m).The loss of ecological functions provided by some species when they disappear from natural habitats and only persist in cities may have long-term, unexpected effects on ecosystems. This study demonstrates how two cities may soon be the last refuges for two endemic parrots if overharvesting continues, in which case their overlooked role as seed dispersers would be completely lost in nature. The functional extinction of these species could strongly affect vegetation communities in an island environment where seed-dispersal species are naturally scarce. While conservation plans must include urban populations of threatened species, greater efforts are needed to restore their populations in natural habitats to conserve ecological functions. informacion[at]ebd.csic.es: Luna et al (2018) Cities may save some threatened species but not their ecological functions. PeerJ 6:e4908 Doi 10.7717/peerj.4908


https://peerj.com/articles/4908/