News News

Human footprint and vulture mortality

Events of non-natural mortality in human-dominated landscapes are especially challenging for populations of large vertebrates with K strategies. Among birds, vultures are one of the most threatened groups experiencing sharp population declines due to non-natural mortality. Factors causing non-natural mortality are usually studied separately. However, the potential use of an integrated index able to predict large-scale mortality risks of avian scavengers could be especially useful for planning conservation strategies. Here, the Human Footprint index was used to examine the impact of landscape anthropization on the survival rates of 66 GPS-tagged adult Eurasian griffon vultures (Gyps fulvus) in two Spanish regions. Foraging in more anthropized areas resulted in a significantly higher individual mortality risk mainly due to collisions with vehicles, poisonings, electrocutions and fatalities with wind turbines. Mean yearly survival rates were estimated at 0.817 and 0.968 for individuals from the more and less anthropized regions, respectively. Additional research should investigate whether some vulture populations could be acting as sinks unnoticed due to metapopulation dynamics. From a broader point of view, this study shows that a straightforward Human Footprint was a useful index to predict the survival of top scavengers and can be highly applicable to planning large-scale conservation measures. informacion[at]ebd.csic.es: Arrondo et al (2020) Landscape anthropization shapes the survival of a top avian scavenger. Biodivers Conserv. https://doi.org/10.1007/s10531-020-01942-6


https://link.springer.com/article/10.1007%2Fs10531-020-01942-6#
Average (0 Votes)

Latest News Latest News

Back

Less abundant animal and plant species gather in ghettos in order to survive

Less abundant animal and plant species gather in ghettos in order to survive

According to the competitive exclusion principle, species with low competitive abilities should be excluded by more efficient competitors; yet, they generally remain as rare species. The positive and negative spatial association networks of 326 disparate assemblages was described showing a general organization pattern that simultaneously supports the primacy of competition and the persistence of rare species. Abundant species monopolize negative associations in about 90% of the assemblages. On the other hand, rare species are mostly involved in positive associations, forming small network modules. Simulations suggest that positive interactions among rare species and microhabitat preferences are the most probable mechanisms underpinning this pattern and rare species persistence. The consistent results across taxa and geography suggest a general explanation for the maintenance of biodiversity in competitive environments. información[at]ebd.csic.es: Calatayud et al (2019) Positive associations among rare species and their persistence in ecological assemblages. Nature Ecol Evol. DOI 10.1038/s41559-019-1053-5.


https://www.nature.com/articles/s41559-019-1053-5