News News

Impairment of mixed melanin-based pigmentation in parrots

Parrots and allies (Order Psittaciformes) have evolved an exclusive capacity to synthesize polyene pigments called psittacofulvins at feather follicles, which allows them to produce a striking diversity of pigmentation phenotypes. Melanins are polymers constituting the most abundant pigments in animals, and the sulphurated form (pheomelanin) produces colors that are similar to those produced by psittacofulvins. However, the differential contribution of these pigments to psittaciform phenotypic diversity has not been investigated. Given the color redundancy, and physiological limitations associated to pheomelanin synthesis, this study assumed that the latter would be avoided by psittaciform birds. This hypothesis was tested by using Raman spectroscopy to identify pigments in feathers exhibiting colors suspicious of being produced by pheomelanin (i.e., dull red, yellow and grey- and green-brownish) in 26 species from the three main lineages of Psittaciformes. The non-sulphurated melanin form (eumelanin) were detected in black, grey and brown plumage patches, and psittacofulvins in red, yellow and green patches, but no evidence of pheomelanin was found. As natural melanins are assumed to be composed of eumelanin and pheomelanin in varying ratios, these results represent the first report of impairment of mixed melanin-based pigmentation in animals. Given that psittaciforms also avoid the uptake of circulating carotenoid pigments, these birds seem to have evolved a capacity to avoid functional redundancy between pigments, likely by regulating follicular gene expression. The study provides the first vibrational characterization of different psittacofulvin-based colors and thus helps to determine the relative polyene chain length in these pigments, which is related to their antireductant protection activity. informacion[at] Neves et al (2020) Impairment of mixed melanin-based pigmentation in parrots. J Experim Biol. DOI 10.1242/jeb.225912
Average (0 Votes)

Latest News Latest News


The killer whales of the Strait of Gibraltar are different

The killer whales of the Strait of Gibraltar are different

A key goal for wildlife managers is identifying discrete, demographically independent conservation units. Previous genetic work assigned killer whales that occur seasonally in the Strait of Gibraltar (SoG) and killer whales sampled off the Canary Islands (CI) to the same population. Here authors present new analyses of photo-identification and individual genotypes to assess the level of contemporary gene flow and migration between study areas, and analyses of biomarkers to assess ecological differences. Mitochondrial DNA control region haplotype was shared by all individuals sampled within each pod, suggesting that pods have a matrifocal social structure typical of this species, whilst the lack of shared mitogenome haplotypes between the CI and SoG individuals suggests that there was little or no female migration between groups. Kinship analysis detected no close kin between CI and SoG individuals, and low to zero contemporary gene flow. Isotopic values and organochlorine pollutant loads also suggest ecological differences between study areas. One individual from a pod within the SoG not seen in association with the other four pods and identified as belonging to a potential migrant lineage by genetic analyses, had intermediate isotopic values and contaminant between the two study areas. Overall results suggest a complex pattern of social and genetic structuring correlated with ecological variation. Consequently at least CI and SoG should be considered as two different management units. Understanding this complexity appears to be an important consideration when monitoring and understanding the viability of these management units which, ultimately, will help the conservation of these threatened management units. informacion[at] Esteban et al (2016) Using a multi-disciplinary approach to identify a critically endangered killer whale management unit. Ecol Indic 66:291-300 doi:10.1016/j.ecolind.2016.01.043