News News

Impairment of mixed melanin-based pigmentation in parrots

Parrots and allies (Order Psittaciformes) have evolved an exclusive capacity to synthesize polyene pigments called psittacofulvins at feather follicles, which allows them to produce a striking diversity of pigmentation phenotypes. Melanins are polymers constituting the most abundant pigments in animals, and the sulphurated form (pheomelanin) produces colors that are similar to those produced by psittacofulvins. However, the differential contribution of these pigments to psittaciform phenotypic diversity has not been investigated. Given the color redundancy, and physiological limitations associated to pheomelanin synthesis, this study assumed that the latter would be avoided by psittaciform birds. This hypothesis was tested by using Raman spectroscopy to identify pigments in feathers exhibiting colors suspicious of being produced by pheomelanin (i.e., dull red, yellow and grey- and green-brownish) in 26 species from the three main lineages of Psittaciformes. The non-sulphurated melanin form (eumelanin) were detected in black, grey and brown plumage patches, and psittacofulvins in red, yellow and green patches, but no evidence of pheomelanin was found. As natural melanins are assumed to be composed of eumelanin and pheomelanin in varying ratios, these results represent the first report of impairment of mixed melanin-based pigmentation in animals. Given that psittaciforms also avoid the uptake of circulating carotenoid pigments, these birds seem to have evolved a capacity to avoid functional redundancy between pigments, likely by regulating follicular gene expression. The study provides the first vibrational characterization of different psittacofulvin-based colors and thus helps to determine the relative polyene chain length in these pigments, which is related to their antireductant protection activity. informacion[at] Neves et al (2020) Impairment of mixed melanin-based pigmentation in parrots. J Experim Biol. DOI 10.1242/jeb.225912
Average (0 Votes)

Latest News Latest News


Eucalypt plantations disturb the development of amphibian larvae

Eucalypt plantations disturb the development of amphibian larvae

Consequences of human actions like global warming, spread of exotic species or resource consumption are pushing species to extinction. Even species considered to be at low extinction risk often show signs of local declines. Here, the impact of eucalypt plantations, the best-known exotic tree species worldwide, was evaluated as well as its interaction with temperature and predators on amphibian development, growth, antipredator responses and physiology. For this purpose, a fully factorial experiment was applied crossing two types of leaf litter (native oak or eucalypt), two temperatures (15 and 20°C) and presence/absence of native predators. Leachates of eucalypt leaf litter reduced amphibian development and growth, compromised their antipredator responses and altered their metabolic rate. Increased temperature itself also posed serious alterations on development, growth, antioxidant ability and the immune status of tadpoles. However, the combined effects of eucalypt leaf litter and increased temperature were additive, not synergistic. Therefore, non-lethal levels of a globally spread disruptor such as leachates from eucalypt leaf litter can seriously impact the life history and physiology of native amphibian populations. This study highlights the need to evaluate the status of wild populations exposed to human activities even if not at an obvious immediate risk of extinction, based on reliable stress markers, in order to anticipate demographic declines that may be hard to reverse once started. Replacing eucalypt plantations with native trees in protected areas would help improving the health of local amphibian larvae. In zones of economic interest, providing patches of native vegetation around ponds and removing eucalypt leaf litter from pond basins during their dry phase is recommend. informacion[at] Burraco et al (2018) Eucalypt leaf litter impairs growth and development of amphibian larvae, inhibits their antipredator responses and alters their physiology. Conserv Physiol DOI 10.1093/conphys/coy066