News News

Human impact has contributed to the decline of the Eurasion lynx

Disentangling the contribution of long?term evolutionary processes and recent anthropogenic impacts to current genetic patterns of wildlife species is key to assessing genetic risks and designing conservation strategies. Eighty whole nuclear genomes and 96 mitogenomes from populations of the Eurasian lynx covering a range of conservation statuses, climatic zones and subspecies across Eurasia were used to infer the demographic history, reconstruct genetic patterns, and discuss the influence of long?term isolation and more recent human?driven changes. Results show that Eurasian lynx populations shared a common history until 100,000 years ago, when Asian and European populations started to diverge and both entered a period of continuous and widespread decline, with western populations, except Kirov (Russia), maintaining lower effective sizes than eastern populations. Population declines and increased isolation in more recent times probably drove the genetic differentiation between geographically and ecologically close westernmost European populations. By contrast, and despite the wide range of habitats covered, populations are quite homogeneous genetically across the Asian range, showing a pattern of isolation by distance and providing little genetic support for the several proposed subspecies. Mitogenomic and nuclear divergences and population declines starting during the Late Pleistocene can be mostly attributed to climatic fluctuations and early human influence, but the widespread and sustained decline since the Holocene is more probably the consequence of anthropogenic impacts which intensified in recent centuries, especially in western Europe. Genetic erosion in isolated European populations and lack of evidence for long?term isolation argue for the restoration of lost population connectivity between European and Asian poulations. informacion[at] Lucena-Perez et al (2020). Genomic patterns in the widespread Eurasian lynx shaped by Late Quaternary climatic fluctuations and anthropogenic impacts. MOL ECOL 29(4) DOI 10.1111/mec.15366
Average (0 Votes)

Latest News Latest News


Solar and terrestrial radiations explain continental-scale variation in bird pigmentation

Solar and terrestrial radiations explain continental-scale variation in bird pigmentation

Animals living on the earth's surface are protected from the damaging effects of solar ultraviolet (UV) radiation by melanin pigments that color their integument. UV levels that reach the earth's surface vary spatially, but the role of UV exposure in shaping clinal variations in animal pigmentation has never been tested. Here it is shown at a continental scale in Europe that golden eagles Aquila chrysaetos reared in territories with a high solar UV-B radiation exposure deposit lower amounts of the sulphurated form of melanin (pheomelanin) in feathers and consequently develop darker plumage phenotypes than eagles from territories with lower radiation exposure. This clinal variation in pigmentation is also explained by terrestrial gamma radiation levels in the rearing territories by a similar effect on the pheomelanin content of feathers, unveiling natural radioactivity as a previously unsuspected factor shaping animal pigmentation. These findings show for the first time the potential of solar and terrestrial radiations to explain pigmentation phenotype diversity in animals, including humans, at large spatial scales. informacion[at] Galván et al (2018) Solar and terrestrial radiations explain continental-scale variation in bird pigmentation. Oecologia Doi 10.1007/s00442-018-4238-8