News News

Strategies shrubby junipers adopt to tolerate drought differ by site

Drought-induced dieback episodes are globally reported among forest ecosystems but they have been understudied in scrublands. Chronically-stressed individuals are supposed to be more vulnerable prior to drought which triggers death. Drought-triggered dieback and mortality events affecting Mediterranean Juniperus phoenicea scrublands were analyzed in two sites with contrasting climate and soil conditions located in Spain. The radial growth patterns of coexisting living and dead junipers, including the calculation of growth statistics used as early-warning signals, quantified growth response to climate, were characterized and the wood C and O isotope discrimination was analyzed. In the inland, continental site with rocky substrates (Yaso, Huesca, N Spain), dead junipers grew less than living junipers about three decades prior to the dieback started in 2016. However, in the coastal, mild site with sandy soils (Doñana, Huelva, SW Spain), dead junipers were smaller but grew more than living junipers about two decades before the dieback onset in 2005. The only common patterns between sites were the higher growth coherence in both living and dead junipers prior to the dieback, and the decrease in growth persistence of dead junipers. Cool and wet conditions in the prior winter and current spring, and cool summer conditions enhanced juniper growth. In Doñana, growth of living individuals was more reduced by warm July conditions than in the case of dead individuals. Higher ?13C values in Yaso indicate also more pronounced drought stress. In Yaso, dead junipers presented lower ?18O values, but the opposite occurred in Doñana suggesting different changes in stomatal conductance prior to death. Warm summer conditions enhance evapotranspiration rates and trigger dieback in this shallow-rooted species, particularly in sites with a poor water-holding capacity. Chronic, slow growth is not always a reliable predictor of drought-triggered mortality. informacion[at] Camarero et al (2020) Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agr Forest Meteorol 291, 108078. DOI 10.1016/j.agrformet.2020.108078
Average (0 Votes)

Latest News Latest News


The six most important threats for petrels and shearwaters

The six most important threats for petrels and shearwaters

Shearwaters and petrels (hereafter petrels) are highly adapted seabirds that occur across all the world's oceans. Petrels are a threatened seabird group comprising 120 species. They have bet-hedging life histories typified by extended chick rearing periods, low fecundity, high adult survival, strong philopatry, monogamy and long-term mate fidelity and are thus vulnerable to change. Anthropogenic alterations on land and at sea have led to a poor conservation status of many petrels with 49 (41%) threatened species based on IUCN criteria and 61 (51%) suffering population declines. Some species are well-studied, even being used as bioindicators of ocean health, yet for others there are major knowledge gaps regarding their breeding grounds, migratory areas or other key aspects of their biology and ecology. Here, 38 petrel conservation researchers summarize information regarding the most important threats according to the IUCN Red List of threatened species to identify knowledge gaps that must be filled to improve conservation and management of petrels. Research advances on the main threats for petrels are highlighted: invasive species at breeding grounds, bycatch, overfishing, light pollution, climate change, and pollution. An ambitious goal is proposed to reverse at least some of these six main threats, through active efforts such as restoring island habitats (e.g. invasive species removal, control and prevention), improving policies and regulations at global and regional levels, and engaging local communities in conservation efforts. The clear message that emerges from this review is the continued need for research and monitoring to inform and motivate effective conservation at the global level. informacion[at] Rodríguez et al (2019) Future directions in conservation research on petrels and shearwaters. Front Mar Sci DOI: 10.3389/fmars.2019.00094