News News

Influencia diferencial de la expresión de Slc7a11 y la condición corporal sobre la pigmentación producida por feomelanina en dos poblaciones de trepador azul Sitta europea con diferente riesgo de depredación

The expression of the gene Slc7a11 promotes the antioxidant capacity of cells by providing them with cysteine that can be used for the synthesis of glutathione (GSH), the most important intracellular antioxidant. In melanocytes, intracellular cysteine can also enter melanosomes and get incorporated in the pigment pheomelanin synthesis pathway, thus decreasing cysteine availability for GSH synthesis and potentially creating chronic oxidative stress. Therefore, this study hypothesized that a mechanism limiting the use of intramelanocytic cysteine for pheomelanin synthesis in environmental conditions generating oxidative stress may be physiologically advantageous and favored by natural selection. Evidence we searched of such a mechanism by comparing the influence of melanocytic Slc7a11 expression on pheomelanin?based pigmentation in developing Eurasian nuthatch Sitta europaea nestlings from two populations differing in predation risk, a natural source of oxidative stress. Pheomelanin synthesis and pigmentation tended to increase with Slc7a11 expression in the low?risk population as expected from the activity of this gene, but decreased with Slc7a11 expression in the high?risk population. The same was not observed in the expression of five other genes influencing pheomelanin synthesis without affecting cysteine availability in melanocytes. The influence of body condition on the intensity of pheomelanin?based pigmentation also differed between populations, being positive in the low?risk population and negative in the high?risk population. The resulting pigmentation of birds was more intense in the high?risk population. These findings suggest that birds perceiving high predation risk may limit the use of cysteine for pheomelanin synthesis, which becomes independent of Slc7a11 expression. Some birds may have thus evolved the ability to adjust their pigmentation phenotype to environmental stress. informacion[at]ebd.csic.es: Galván & Sanz (2020) Differential influence of Slc7a11 expression and body condition on pheomelanin-based pigmentation in two Eurasian nuthatch Sitta europaea populations with different predation risk. J Avian Biol DOI 10.1111/jav.02275


https://onlinelibrary.wiley.com/doi/10.1111/jav.02275
Average (0 Votes)

Latest News Latest News

Back

Angiosperm seeds lacking external flesh can be adapted for endozoochory

Angiosperm seeds lacking external flesh can be adapted for endozoochory

It is often assumed that only plants with a fleshy fruit disperse inside vertebrate guts, i.e. by "endozoochory". However, only 8% of European angiosperms have a fleshy fruit, and endozoochory of other plants by herbivorous or granivorous birds and mammals is widespread in nature. Many terrestrial and aquatic plants disperse via endozoochory by migratory waterbirds, providing long-dispersal dispersal. But how do they survive gut passage? Is the mechanical resistance to digestion different to that recorded in fleshy-fruited plants? Using SEM and 11 plants we compared seed morphology before and after gut passage through mallards. Diverse seed and dry fruit architecture provided multiple mechanisms to resist digestion and so enable seed survival. There are no fundamental differences in the way that these seeds, or those from fleshy-fruited plants, survive gut passage. Both plant types are pre-adapted for endozoochory and for seed dispersal mutualisms. informacion[at]ebd.csic.es: Costea et al (2019) The Effect of Gut Passage by Waterbirds on the Seed Coat and Pericarp of Diaspores Lacking "External Flesh": Evidence for Widespread Adaptation to Endozoochory in Angiosperms. PLoS ONE 14(12): e0226551


https://doi.org/10.1371/journal.pone.0226551