News News

Strategies shrubby junipers adopt to tolerate drought differ by site

Drought-induced dieback episodes are globally reported among forest ecosystems but they have been understudied in scrublands. Chronically-stressed individuals are supposed to be more vulnerable prior to drought which triggers death. Drought-triggered dieback and mortality events affecting Mediterranean Juniperus phoenicea scrublands were analyzed in two sites with contrasting climate and soil conditions located in Spain. The radial growth patterns of coexisting living and dead junipers, including the calculation of growth statistics used as early-warning signals, quantified growth response to climate, were characterized and the wood C and O isotope discrimination was analyzed. In the inland, continental site with rocky substrates (Yaso, Huesca, N Spain), dead junipers grew less than living junipers about three decades prior to the dieback started in 2016. However, in the coastal, mild site with sandy soils (Doñana, Huelva, SW Spain), dead junipers were smaller but grew more than living junipers about two decades before the dieback onset in 2005. The only common patterns between sites were the higher growth coherence in both living and dead junipers prior to the dieback, and the decrease in growth persistence of dead junipers. Cool and wet conditions in the prior winter and current spring, and cool summer conditions enhanced juniper growth. In Doñana, growth of living individuals was more reduced by warm July conditions than in the case of dead individuals. Higher ?13C values in Yaso indicate also more pronounced drought stress. In Yaso, dead junipers presented lower ?18O values, but the opposite occurred in Doñana suggesting different changes in stomatal conductance prior to death. Warm summer conditions enhance evapotranspiration rates and trigger dieback in this shallow-rooted species, particularly in sites with a poor water-holding capacity. Chronic, slow growth is not always a reliable predictor of drought-triggered mortality. informacion[at] Camarero et al (2020) Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agr Forest Meteorol 291, 108078. DOI 10.1016/j.agrformet.2020.108078
Average (0 Votes)

Latest News Latest News


Avian malaria parasites reduce the survival of mosquitoes

Avian malaria parasites reduce the survival of mosquitoes

Plasmodium transmission success depends upon the trade-off between the use of host resources to favour parasite reproduction and the negative effects on host health, which can be mediated by infection intensity. Despite its potential influence on parasite dynamics, the effects of infection intensity on both, birds and vectors, and on Plasmodium transmission success are still poorly understood. Here, the Plasmodium load in naturally infected wild house sparrows was experimentally reduced with the antimalarial primaquine to assess the effects of intensity of infection in the vertebrate hosts on Plasmodium transmission to and by mosquitoes. Survival of Culex pipiens mosquitoes was monitored throughout the development of the parasite and the infection status of the mosquitoes by analysing the head-thorax and saliva at 13 days post-exposure to birds. The proportion of mosquitoes infected by Plasmodium and the presence of Plasmodium in saliva were not associated with the medication treatment of birds. However, the experimental treatment affected vector survival with mosquitoes fed on medicated birds showing a higher survival rate than those fed on control individuals. These results provide strong experimental evidence of the impact of parasite load of vertebrate hosts on the survival probability of malaria vectors. Like humans, wild birds can be infected with malaria, although the malaria parasites that affect birds are different and can not be transmitted to humans. Avian malaria parasites require mosquitoes to be transmitted effectively between an infected bird and a new host, but the results of this study indicate that these parasites involve a cost on the survival of the insects. informacion[at] Gutiérrez-López et al (2019) Experimental reduction of host Plasmodium infection load affects mosquito survival. Scientific Reports 9(1): 8782