News News

Optimization of protocols for DNA extraction from fecal samples

High-throughput sequencing offers new possibilities in molecular ecology and conservation studies. However, its potential has not yet become fully exploited for noninvasive studies of free–ranging animals, such as those based on feces. High–throughput sequencing allows sequencing of short DNA fragments and could allow simultaneous genotyping of a very large number of samples and markers at a low cost. The application of high throughput genotyping to fecal samples from wildlife has been hindered by several labor intensive steps. Alternative protocols which could allow higher throughput were evaluated for two of these steps: sample collection and DNA extraction. Two different field sampling and seven different DNA extraction methods were tested on grey wolf (Canis lupus) feces. There was high variation in genotyping success rates. The field sampling method based on surface swabbing performed much worse than the extraction from a fecal fragment. In addition, there is a lot of room for improvement in the DNA extraction step. Optimization of protocols can lead to very much more efficient, cheaper and higher throughput noninvasive monitoring. Selection of appropriate markers is still of paramount importance to increase genotyping success. informacion[at]ebd.csic.es: Sarabia et al (2020) Towards high-throughput analyses of fecal samples from wildlife. Animal Biodiver Conserv 43.2: 271–283 Doi 10.32800/abc.2020.43.0271


http://abc.museucienciesjournals.cat/volum-43-2-2020/towards-high-throughput-analyses-of-fecal-samples-from-wildlife/?lang=en
Average (0 Votes)

Latest News Latest News

Back

Melanin and oxidative stress

Melanin and oxidative stress

Knowledge of melanin chemistry has important implications for the study of the evolutionary ecology of animal pigmentation, but the actual chemical diversity of these widely expressed biological pigments has been largely overlooked. Considering all melanin forms and the different conditions of endogenous oxidative stress during their synthesis provides information about physiological costs and benefits of different pigmentation patterns and opens a new perspective to understanding the evolution of color phenotypes in animals. informacion[at]ebd.csic.es Galvan & Solano (2015) Melanin Chemistry and the Ecology of Stress. Physiol Biochem Zool http://www.jstor.org/stable/10.1086/680362


http://www.jstor.org/stable/10.1086/680362