News News

Genetic variability of red swamp crayfish reveals its invasion process

Patterns of genetic diversity in invasive populations can be modulated by a range of factors acting at different stages of the invasion process, including the genetic composition of the source population(s), the introduction history (e.g. propagule pressure), the environmental suitability of recipient areas, and the features of secondary introductions. The North American red swamp crayfish, Procambarus clarkii, is one of the most widely introduced freshwater species worldwide. It was legally introduced into Spain twice, near the city of Badajoz in 1973 and in the Guadalquivir marshes in 1974. Thereafter the species rapidly colonised almost the entire Iberian Peninsula. Seven nuclear microsatellites were used to describe the genetic diversity and structure of 28 locations distributed across the Iberian Peninsula and to explain the expansion process of the red swamp crayfish. Additionally, the relationship between environmental suitability and genetic diversity of the studied locations were analysed. The red swamp crayfish had a clear spatial genetic structure in the Iberian Peninsula, probably determined by the two independent introduction events in the 1970s, which produced two main clusters separated spatially, one of which was dominant in Portugal and the other in Spain. The human-mediated dispersal process seemed to have involved invasion hubs, hosting highly genetically diverse areas and acting as sources for subsequent introductions. Genetic diversity also tended to be higher in more suitable environments across the Iberian Peninsula. These results showed that the complex and human-mediated expansion of the red swamp crayfish in the Iberian Peninsula has involved several long- and short-distance movements and that both ecological and anthropogenic factors have shaped the genetic diversity patterns resulting from this invasion process. Early detection of potential invasion hubs may help to halt multiple short-distance translocations and thus the rapid expansion of highly prolific invasive species over non-native areas. informacion[at]ebd.csic.es: Acevedo-Limón et al (2020) Historical, human, and environmental drivers of genetic diversity in the red swamp crayfish (Procambarus clarkii) invading the Iberian Peninsula. Freshwater Biology. Doi 10.1111/fwb.13513


https://onlinelibrary.wiley.com/doi/full/10.1111/fwb.13513
Average (0 Votes)

Latest News Latest News

Back

Home is where I grew up

Home is where I grew up

In this study, a cross-fostering experiment was conducted between an oakwood and an adjacent conifer plantation to investigate the role of early experience and genetic background in habitat selection in a pied flycatcher (Ficedula hypoleuca) population. Most birds returned to breed in the forest patch where they were raised, indicating that settlement decisions are determined by individuals' experience in their natal site, rather than by their genetic background. Nevertheless, a third moved away from the rearing habitat and, as previously observed in unmanipulated individuals, dispersal between habitats was size-dependent. Pied flycatchers breeding in the oak and the pine forests are differentiated by body size (the latter being smaller in size), and analyses of genetic variation at microsatellite loci now provide evidence of subtle genetic differentiation between the two populations. Phenotype-dependent dispersal may contribute to population structure even at small spatial scales. Nevertheless, the strong tendency to return to the natal patch regardless of their body size might lead to maladaptive settlement decisions and thus constrain the potential of phenotype-dependent dispersal to promote microgeographic adaptation. informacion[at]ebd.csic.es: Camacho et al (2016) Natal habitat imprinting counteracts the diversifying effects of phenotype-dependent dispersal in a spatially structured population. BMC Evolutionary Biology 16:158. DOI: 10.1186/s12862-016-0724-y


http://link.springer.com/article/10.1186/s12862-016-0724-y