News News

The costs of mischoosing are not uniform across individuals

250

Matching habitat choice is a particular form of habitat selection based on self?assessment of local performance that offers individuals a means to optimize the match of phenotype to the environment. Despite the advantages of this mechanism in terms of increased local adaptation, examples from natural populations are extremely rare. One possible reason for the apparent rarity of matching habitat choice is that it might be manifest only in those segments of a population for which the cost of a phenotype–environment mismatch is high. To test this hypothesis, we used a breeding population of sockeye salmon (Oncorhynchus nerka) exposed to size-dependent predation risk by bears, and evaluated the costs of mischoosing in discrete groups (e.g. male versus females, and ocean?age 2 versus ocean?age 3) using reproductive life span as a measure of individual performance. Bear preference for larger fish, especially in shallow water, translates into a performance trade-off that sockeye salmon can potentially use to guide their settlement decisions. Consistent with matching habitat choice, we found that salmon of similar ocean?age and size tended to cluster together in sites of similar water depth. However, matching habitat choice was only favoured in 3?ocean females – the segment of the population most vulnerable to bear predation. This study illustrates the unequal relevance of matching habitat choice to different segments of a population, and suggests that ‘partial matching habitat choice' could have resulted in an underestimation of the actual prevalence of this mechanism in nature. informacion[at]ebd.csic.es: Camacho & Hendry (2020) Matching habitat choice: it's not for everyone. Oikos DOI 10.1111/oik.06932


https://onlinelibrary.wiley.com/doi/full/10.1111/oik.06932
Average (0 Votes)

Latest News Latest News

Back

Effects of host sex, body mass and infection by avian Plasmodium on the biting rate of two mosquito species with different feeding preferences

Effects of host sex, body mass and infection by avian Plasmodium on the biting rate of two mosquito species with different feeding preferences

The transmission of mosquito-borne pathogens is strongly influenced by the contact rates between mosquitoes and susceptible hosts. The biting rates of mosquitoes depend on different factors including the mosquito species and host-related traits (i.e. odour, heat and behaviour). However, host characteristics potentially affecting intraspecific differences in the biting rate of mosquitoes are poorly known. Here, the impact of three host-related traits on the biting rate of two mosquito species with different feeding preferences: the ornithophilic Culex pipiens and the mammophilic Ochlerotatus (Aedes) caspius are assessed. Seventy-two jackdaws Corvus monedula and 101 house sparrows Passer domesticus were individually exposed to mosquito bites to test the effect of host sex, body mass and infection status by the avian malaria parasite Plasmodium on biting rates. Ochlerotatus caspius showed significantly higher biting rates than Cx. pipiens on jackdaws, but non-significant differences were found on house sparrows. In addition, more Oc. caspius fed on female than on male jackdaws, while no differences were found for Cx. pipiens. The biting rate of mosquitoes on house sparrows increased through the year. The bird infection status and body mass of both avian hosts were not related to the biting rate of both mosquito species. Host sex was the only host-related trait potentially affecting the biting rate of mosquitoes, although its effect may differ between mosquito and host species. informacion[at]ebd.csic.es: Gutiérrez-López et al (2019) Effects of host sex, body mass and infection by avian Plasmodium on the biting rate of two mosquito species with different feeding preferences. Parasite Vector, https://doi.org/10.1186/s13071-019-3342-x


https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-019-3342-x