News News

Restored and artificial wetlands do not support the same waterbird functional diversity as natural wetlands

The restoration of degraded areas and the creation of artificial ecosystems have partially compensated for the continuing loss of natural wetlands. However, the success of these wetlands in terms of the capacity of supporting biodiversity and ecosystem functions is unclear. Natural, restored, and artificially created wetlands present within the Doñana protected area were compared to evaluate if they are equivalent in terms of waterbird functional trait diversity and composition. Functional diversity measures and functional group species richness describing species diet, body mass, and foraging techniques were modelled in 20 wetlands in wintering and breeding seasons. Artificial wetlands constructed for conservation failed to reach the functional diversity of natural and restored wetlands. Unexpectedly, artificial ponds constructed for fish production performed better, and even exceeded natural wetlands for functional richness during winter. Fish ponds stood out as having a unique functional composition, connected with an increase in richness of opportunistic gulls and a decrease in species sensitive to high salinity. Overall, the functional structure of breeding communities was more affected by wetland type than wintering communities. These findings suggest that compensating the loss of natural wetlands with restored and artificial wetlands results in systems with altered waterbird?supported functions. Protection of natural Mediterranean wetlands is vital to maintain the original diversity and composition of waterbird functional traits. Furthermore, restoration must be prioritised over the creation of artificial wetlands, which, even when intended for conservation, may not provide an adequate replacement. informacion[at]ebd.csic.es: Almeida et al. (2020) Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshwater Biology DOI 10.1111/fwb.13618


https://onlinelibrary.wiley.com/doi/full/10.1111/fwb.13618
Average (0 Votes)

Latest News Latest News

Back

Predictors of pollinator service

Predictors of pollinator service

Pollinator service is essential for successful sexual reproduction and long-term population persistence of animal-pollinated plants, and innumerable studies have shown that insufficient service by pollinators results in impaired sexual reproduction ("pollen limitation"). Studies directly addressing the predictors of variation in pollinator service across species or habitats remain comparatively scarce, which limits our understanding of the primary causes of natural variation in pollen limitation. This paper evaluates the importance of pollination-related features, evolutionary history and environment as predictors of pollinator service in a large sample of plant species from undisturbed montane habitats in southeastern Spain. Quantitative data on pollinator visitation were obtained for 191 insect-pollinated species belonging to 142 genera in 43 families, and the predictive values of simple floral traits (perianth type, class of pollinator visitation unit, and visitation unit dry mass), phylogeny, and habitat type were assessed. A total of 24,866 pollinator censuses accounting for 5,414,856 flower-min of observation were conducted on 510 different dates. Flowering patch and single flower visitation probabilities by all pollinators combined were significantly predicted by the combined effects of perianth type (open vs. restricted), class of visitation unit (single flower vs. flower packet), mass of visitation unit, phylogenetic relationships, and habitat type. Pollinator composition at insect order level varied extensively among plant species, largely reflecting the contrasting visitation responses of Coleoptera (beetles), Diptera (flies), Hymenoptera (bees) and Lepidoptera (butterflies) to variation in floral traits. For example, Lepidoptera responded positively to increasing mass of visitation unit in species with flowers packets, but negatively in species with single flowers and restrictive perianths. Pollinator composition had a strong phylogenetic component, and the distribution of phylogenetic autocorrelation hotspots of visitation rates across the plant phylogeny differed widely among insect orders. Habitat type was a key predictor of pollinator composition, as major insect orders exhibited decoupled variation across habitat types in visitation rates. Comprehensive pollinator sampling of a regional plant community has shown that pollinator visitation and composition can be parsimoniously predicted by a combination of simple floral features, habitat type and evolutionary history. Ambitious community-level studies can help to formulate novel hypotheses and questions, shed fresh light on long-standing controversies in pollination research (e.g., "pollination syndromes"), and identify methodological cautions that should be considered in pollination community studies dealing with small, phylogenetically-biased plant species samples. informacion[at]ebd.csic.es: Herrera (2019) Flower traits, habitat, and phylogeny as predictors of pollinator service: a plant community perspective. Ecol Monographs DOI 10.1002/ecm.1402


https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecm.1402