News News

Restored and artificial wetlands do not support the same waterbird functional diversity as natural wetlands

The restoration of degraded areas and the creation of artificial ecosystems have partially compensated for the continuing loss of natural wetlands. However, the success of these wetlands in terms of the capacity of supporting biodiversity and ecosystem functions is unclear. Natural, restored, and artificially created wetlands present within the Doñana protected area were compared to evaluate if they are equivalent in terms of waterbird functional trait diversity and composition. Functional diversity measures and functional group species richness describing species diet, body mass, and foraging techniques were modelled in 20 wetlands in wintering and breeding seasons. Artificial wetlands constructed for conservation failed to reach the functional diversity of natural and restored wetlands. Unexpectedly, artificial ponds constructed for fish production performed better, and even exceeded natural wetlands for functional richness during winter. Fish ponds stood out as having a unique functional composition, connected with an increase in richness of opportunistic gulls and a decrease in species sensitive to high salinity. Overall, the functional structure of breeding communities was more affected by wetland type than wintering communities. These findings suggest that compensating the loss of natural wetlands with restored and artificial wetlands results in systems with altered waterbird?supported functions. Protection of natural Mediterranean wetlands is vital to maintain the original diversity and composition of waterbird functional traits. Furthermore, restoration must be prioritised over the creation of artificial wetlands, which, even when intended for conservation, may not provide an adequate replacement. informacion[at] Almeida et al. (2020) Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshwater Biology DOI 10.1111/fwb.13618
Average (0 Votes)

Latest News Latest News


Tropical bat as mammalian model for skin carotenoid metabolism

Tropical bat as mammalian model for skin carotenoid metabolism

Animals cannot synthesize carotenoid pigments de novo, and must consume them in their diet. Most mammals, including humans, are indiscriminate accumulators of carotenoids but inefficiently distribute them to some tissues and organs, such as skin. This limits the potential capacity of these organisms to benefit from the antioxidant and immunostimulatory functions that carotenoids fulfill. Indeed, to date, no mammal has been known to have evolved physiological mechanisms to incorporate and deposit carotenoids in the skin or hair, and mammals have therefore been assumed to rely entirely on other pigments such as melanins to color their integument. Here high-performance liquid chromatography (HPLC) in combination with time-of-flight mass spectrometry (HPLC-TOF/MS) is used to show that the frugivorous Honduran white bat Ectophylla alba colors its skin bright yellow with the deposition of the xanthophyll lutein. The Honduran white bat is thus a mammalian model that may help developing strategies to improve the assimilation of lutein in humans to avoid macular degeneration. This represents a change of paradigm in animal physiology showing that some mammals actually have the capacity to accumulate dietary carotenoids in the integument. In addition, the majority of the lutein in the skin of Honduran white bats is present in esterified form with fatty acids, thereby permitting longer-lasting coloration and suggesting bright color traits may have an overlooked role in the visual communication of bats. informacion[at] Galvan et at (2016) Tropical bat as mammalian model for skin carotenoid metabolism. Proc Natl Acad Sci USA doi: 10.1073/pnas.1609724113