News News

Army ant invasion of leatherback nests in Gabon

Egg mortality is one of the main factors affecting life history and conservation of oviparous species. A massive and cryptic colonisation of many leatherback turtle (Dermochelys coriacea) eggs is presented in the most important rookery for the species in Gabon. A total of 163 nests were exhumed at Kingere beach, revealing that only 16.7% of eggs produced hatchlings. In the 59% of the nests, more than half of the eggs were dead and attacked by invertebrates and 94% had at least one egg affected by invertebrates. The rate of eggs and SAGs (yolkless eggs) affected by invertebrates within a clutch ranged from 0% to 100%, with an average proportion of 39% and 52%, respectively. The most common invertebrates interacting with the eggs were ghost crabs and insects that affected 51% and 82% of the nests, respectively. Crab and insect co-occurred in 33% of the affected nests. Ants, identified as Dorylus spininodis (Emery 1901) were found in 56% of the excavated nests. However, it was not possible to determine if the ants predated alive eggs or scavenged dead eggs. Very often, hundreds of ants were found drowned within dead eggs. Termites and other invertebrates were associated with the clutch environment and identified as opportunistic feeders, being this is the first record of interaction between termites and sea turtle eggs. An unusual ecological interaction within the leatherback clutches between termites and ants was found in 11% of the nests. The abrupt transition between the soil forest and the beach might be favouring a thriving microbial and invertebrate activity in the sand profile that colonises the nests. informacion[at]ebd.csic.es: Ikaran et al (2020) Cryptic massive nest colonisation by ants and termites in the world's largest leatherback turtle rookery Ethol Ecol Evol 2020. Doi 10.1080/03949370.2020.1715487


https://www.tandfonline.com/doi/abs/10.1080/03949370.2020.1715487
Average (0 Votes)

Latest News Latest News

Back

A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches

A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches

Some organisms can modulate gene expression to trigger physiological responses that help adapt to environmental stress. The synthesis of the pigment pheomelanin in melanocytes seems to be one of these responses, as it may contribute to cellular homeostasis. Environmental oxidative stress was experimentally induced in male zebra finches Taeniopygia guttata by the administration of the herbicide diquat dibromide during feather growth to test if the expression of genes involved in pheomelanin synthesis shows epigenetic lability. As pheomelanin synthesis implies decreasing the availability of the main cellular antioxidant (glutathione), it is expected to cause oxidative stress unless a protective mechanism limits pheomelanin synthesis and thus favors the antioxidant capacity. However, diquat exposure did not only improve the antioxidant capacity of birds, but also upregulated the expression of a gene (AGRP) that promotes pheomelanin synthesis in feather melanocytes, leading to the development of darker plumage coloration. No changes in the expression of other genes involved in pheomelanin synthesis (Slc7a11, Slc45a2, MC1R, ASIP and CTNS) were detected. DNA methylation levels only changed in MC1R, suggesting that epigenetic modifications other than changes in methylation may regulate AGRP expression lability. These results suggest that exogenous oxidative stress induced a hormetic response that enhanced their oxidative status and, consequently, promoted pheomelanin-based pigmentation, supporting the idea that birds adjust pheomelanin synthesis to their oxidative stress conditions. información[at]ebd.csic.es: Rodríguez-Martínez & Galván (2019) A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches. Comp Biochem Phys C https://doi.org/10.1016/j.cbpc.2019.108667


https://www.sciencedirect.com/science/article/abs/pii/S1532045619303837