News News

Restored and artificial wetlands do not support the same waterbird functional diversity as natural wetlands

The restoration of degraded areas and the creation of artificial ecosystems have partially compensated for the continuing loss of natural wetlands. However, the success of these wetlands in terms of the capacity of supporting biodiversity and ecosystem functions is unclear. Natural, restored, and artificially created wetlands present within the Doñana protected area were compared to evaluate if they are equivalent in terms of waterbird functional trait diversity and composition. Functional diversity measures and functional group species richness describing species diet, body mass, and foraging techniques were modelled in 20 wetlands in wintering and breeding seasons. Artificial wetlands constructed for conservation failed to reach the functional diversity of natural and restored wetlands. Unexpectedly, artificial ponds constructed for fish production performed better, and even exceeded natural wetlands for functional richness during winter. Fish ponds stood out as having a unique functional composition, connected with an increase in richness of opportunistic gulls and a decrease in species sensitive to high salinity. Overall, the functional structure of breeding communities was more affected by wetland type than wintering communities. These findings suggest that compensating the loss of natural wetlands with restored and artificial wetlands results in systems with altered waterbird?supported functions. Protection of natural Mediterranean wetlands is vital to maintain the original diversity and composition of waterbird functional traits. Furthermore, restoration must be prioritised over the creation of artificial wetlands, which, even when intended for conservation, may not provide an adequate replacement. informacion[at]ebd.csic.es: Almeida et al. (2020) Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshwater Biology DOI 10.1111/fwb.13618


https://onlinelibrary.wiley.com/doi/full/10.1111/fwb.13618
Average (0 Votes)

Latest News Latest News

Interactions between domestic and wild ungulates

Controlling infections shared by wildlife and livestock requires the understanding and quantification of interspecific interactions between the species involved. This is particularly important in...

Vector competence of Aedes caspius and Ae. albopictus mosquitoes for Zika virus, Spain

The vector competence of Aedes caspius and Aedes albopictus mosquitoes in Spain for the transmission of Zika virus was assessed. Whereas Ae. albopictus mosquitoes were a competent vector, Ae....

MIZUTAMA: a quick, easy, and accurate method for counting erythrocytes

Hematological profiles are routinely used to assess the health status of animals. Several methods have been developed for blood-cell counting, but typically they are expensive and/or...

From groups to communities in western lowland gorillas

Social networks are the result of interactions between individuals at different temporal scales. Thus, sporadic intergroup encounters and individual forays play a central role in defining the...