News News

Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones

The most common ecological response to climate change is the shifts in species distribution ranges. Nevertheless, landscape fragmentation compromises the ability of limited dispersal species to move following these climate changes. Building connected environments that enable species to track climate changes is an ultimate goal for biodiversity conservation. An experiment was conducted to determine if electric power transmission lines could be transformed in a continental network of biodiversity reserves for small animals. The study analysed if the management of the habitat located inside the base of the transmission electric towers (providing refuge and planting seedlings of native shrub) allowed to increase local richness of target species (i.e., small mammals and some invertebrates' groups). The results confirmed that by modifying the base of the electric transmission towers density and diversity of several species of invertebrates and small mammals increased as well as number of birds and bird species, increasing local biodiversity. The study suggests that modifying the base of the electric towers would potentially facilitate the connection of fragmented populations. This idea would be easily applicable in any transmission line network anywhere around the world, making it possible for the first time to build up continental scale networks of connectivity. informacion[at]ebd.csic.es: Ferrer et al (2020) Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones? Diversity 12(11): 439; https://doi.org/10.3390/d12110439

Read press release (Spanish)


https://www.mdpi.com/1424-2818/12/11/439
Average (0 Votes)

Latest News Latest News

Turning up the heat on global hotspots of marine biodiversity

The year 2016 has been the hottest on record, reflecting a generally rising trend in the Earth’s temperature. Understanding the global distribution of these changes is extremely important to be...

Living in the dark does not mean a blind life: bird and mammal visual communication in dim light

For many years, it was believed that bird and mammal communication ‘in the dark of the night’ relied exclusively on vocal and chemical signalling. However, in recent decades, several case studies...

The importance of father’s nutrition in early life

Parental environment can widely influence offspring phenotype, but paternal effects in the absence of parental care remain poorly understood. This study looks at the question if protein content in...

Review of seabird mortality caused by land-based artificial lights

Artificial lights at night cause high mortality of seabirds, one of the most endangered groups of birds globally. Fledglings of burrow-nesting seabirds, and to a lesser extent adults, are grounded...

More active local management needed to avoid surpassing thresholds for collapse in Doñana

Many of the world's wetlands may be profoundly affected by climate change over the coming decades. Although wetland managers may have little control over the causes of climate change, they can...