News News

Disentangling the abundance–impact relationship for invasive species

To predict the threat of biological invasions to native species, it is critical to understand how increasing abundance of invasive alien species (IAS) affects native populations and communities. The form of this relationship across taxa and ecosystems is unknown, but is expected to depend strongly on the trophic position of the IAS relative to the native species. Using a global metaanalysis based on 1,258 empirical studies presented in 201 scientific publications, the authors assessed the shape, direction, and strength of native responses to increasing invader abundance. They also tested how native responses varied with relative trophic position and for responses at the population vs. community levels. As IAS abundance increased, native populations declined nonlinearly by 20%, on average, and community metrics declined linearly by 25%. When at higher trophic levels, invaders tended to cause a strong, nonlinear decline in native populations and communities, with the greatest impacts occurring at low invader abundance. In contrast, invaders at the same trophic level tended to cause a linear decline in native populations and communities, while invaders at lower trophic levels had no consistent impacts. At the community level, increasing invader abundance had significantly larger effects on species evenness and diversity than on species richness. These results show that native responses to invasion depend critically on invasive species' abundance and trophic position. Further, these general abundance–impact relationships reveal how IAS impacts are likely to develop during the invasion process and when to best manage them. información[at]ebd.csic.es: Bradley et al (2019) Disentangling the abundance–impact relationship for invasive species. Proc Natl Acad Sci USA https://doi.org/10.1073/pnas.1818081116


https://www.pnas.org/content/116/20/9919
Average (0 Votes)

Latest News Latest News

Strategies shrubby junipers adopt to tolerate drought differ by site

Drought-induced dieback episodes are globally reported among forest ecosystems but they have been understudied in scrublands. Chronically-stressed individuals are supposed to be more vulnerable...

Second notice: Scientists warn of increasing threats posed by invasive alien species

Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species – the subset of alien species...

Carp eggs survive transport through avian intestine

Fish have somehow colonized isolated water bodies all over the world without human assistance. It has long been speculated that these colonization events are assisted by waterbirds, transporting...

Dwarfism in continental populations of natterjack toads in the absence of genetic isolation

Ample variation in body size is common in vertebrates over extensive geographical distances, or in isolated populations, where effective geographical barriers may cause dwarfism or gigantism. The...

Generalized hybridization between commercial and native individuals of bumble bees

Every year more than 1 million commercial bumblebee colonies are deployed in greenhouses worldwide for their pollination services. While commercial pollinators have been an enormous benefit for...