News News

Unexpected bird–feather mite associations revealed by DNA metabarcoding uncovers a dynamic ecoevolutionary scenario

The high relevance of host–switching for the diversification of highly host–specific symbionts (i.e., those commonly inhabiting a single host species) demands a better understanding of host–switching dynamics at an ecological scale. Here, DNA metabarcoding was used to study feather mites on passerine birds in Spain, sequencing mtDNA (COI) for 25,540 individual mites (representing 64 species) from 1,130 birds (representing 71 species). Surprisingly, 1,228 (4.8%) mites from 84 (7.4%) birds were found on host species that were not the expected to be a host according to a recent bird–feather mite associations catalog. Unexpected associations were widespread across studied mite (40.6%) and bird (43.7%) species and showed smaller average infrapopulation sizes than typical associations. Unexpected mite species colonized hosts being distantly related to the set of their usual hosts, but with similar body size. The network of bird–mite associations was modular (i.e., some groups of bird and mite species tended to be more associated with each other than with the others), with 75.9% of the unexpected associations appearing within the module of the typical hosts of the mite species. Lastly, 68.4% of mite species found on unexpected hosts showed signatures of genetic differentiation, and evidence was found for reproduction or the potential for it in many of the unexpected associations. Results show host colonization as a common phenomenon even for these putatively highly host–specific symbionts. Thus, host–switching by feather mites, rather than a rare phenomenon, appears as a relatively frequent phenomenon shaped by ecological filters such as host morphology and is revealed as a fundamental component for a dynamic coevolutionary and codiversification scenario. informacion[at]ebd.csic.es: Doña et al (2018) Unexpected bird-feather mite associations revealed by DNA metabarcoding uncovers a dynamic ecoevolutionary scenario. Mol Ecol DOI: 10.1111/mec.14968


https://onlinelibrary.wiley.com/doi/full/10.1111/mec.14968
Average (0 Votes)

Latest News Latest News

Human footprint and vulture mortality

Events of non-natural mortality in human-dominated landscapes are especially challenging for populations of large vertebrates with K strategies. Among birds, vultures are one of the most threatened...

One century of crayfish invasions

The red swamp crayfish (Procambarus clarkii), native to the southern United States and north-eastern Mexico, is currently the most widely distributed crayfish globally, as well as one of the...

Plasmodium transmission risk differs between mosquito species and parasite lineages

Factors such as the particular combination of parasite-mosquito species, their co-evolutionary history, and the host’s parasite load greatly affect parasite transmission. However, the importance ...

Human activities link fruit bat presence to Ebola virus disease outbreaks

A significant link between forest loss and fragmentation and outbreaks of Ebola virus disease (EVD) in humans has been documented. Deforestation may alter the natural circulation of viruses and...

Predictors of pollinator service

Pollinator service is essential for successful sexual reproduction and long?term population persistence of animal?pollinated plants, and innumerable studies have shown that insufficient service by...